Skip to main content

Noise or Symphony: Comparative Evolutionary Analysis of Sugarcane Transposable Elements with Other Grasses

  • Chapter
  • First Online:
Book cover Plant Transposable Elements

Part of the book series: Topics in Current Genetics ((TCG,volume 24))

Abstract

Sugarcane is an important crop worldwide for sugar and biofuel production. Modern sugarcane cultivars have large, highly complex, polyploid genomes, and like other grasses, have a significant transposable element (TE) content. Four sugarcane TE superfamilies, hAT, Mutator, Gypsy and Copia, were first described from an EST database and, with the availability of genomic sequence, further characterised and compared with TEs from other grasses. Here we summarise previous work and extend the knowledge of the structure, diversity, evolutionary history, age, transcriptional activity and genomic distribution of sugarcane TEs. We also compare and contrast sugarcane TEs with homologous sequences in rice and sorghum, as well as analyse the age and genomic distribution of sugarcane TEs with related lineages from sorghum and rice. Finally, we discuss the importance of defining sugarcane TE lineages for understanding the contribution of ancestral genomes to modern cultivars, for genome sequencing and annotation and in applied genetics.

Article Note

Both authors contributed equally to this paper and are joint first co-authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAC:

Bacterial Artificial Chromosome

BLASTn:

Basic Local Alignment Search Tool nucleotide

EST:

Expressed Sequence Tag

FISH:

Fluorescent In Situ Hybridisation

LTR:

Long Terminal Repeats

my:

millions of years

mya:

millions of years ago

MuLES :

Mutator-Like ElementS

NCBI:

National Center for Biotechnology Information

QTL:

Quantitative Trait Loci

SChAT:

SugarCane hAT sequences

sRNA:

small RNA

TE:

Transposable Elements

TIRs:

Terminal Inverted Repeats

WGD:

Whole Genome Duplication

References

  • Araujo PG, Rossi M, de Jesus EM, Saccaro NL Jr, Kajihara D, Massa R, de Felix JM, Drummond RD, Falco MC, Chabregas SM, Ulian EC, Menossi M, Van Sluys MA (2005) Transcriptionally active transposable elements in recent hybrid sugarcane. Plant J 44:707–717

    Article  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Coleman C, Liu R, Ma J, Ramakrishna W (2004) Consistent over-estimation of gene number in complex plant genomes. Curr Opin Plant Biol 7:732–736

    Article  PubMed  CAS  Google Scholar 

  • Brandes EW (1958) Origin, classification and characteristics in sugarcane (Saccharum officinarum L.). In: Artschwager E, Brandes EW (eds) U. S. Department of agriculture handbook. USDA, Washington DC, pp 1–35

    Google Scholar 

  • Bremer G (1963) Problems in breeding and cytology of sugarcane. 4. Origin of increase of chromosome number in species hybrids of Saccharum. Euphytica 10:325

    Article  Google Scholar 

  • Bundock P, Hooykaas P (2005) An Arabidopsis hAT-like transposase is essential for plant development. Nature 436:282–284

    Article  PubMed  CAS  Google Scholar 

  • Cantu D, Vanzetti LS, Sumner A, Dubcovsky M, Matvienko M, Distelfeld A, Michelmore RW, Dubcovsky J (2010) Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics 11:408

    Article  PubMed  Google Scholar 

  • Cheavegatti-Gianotto A, Abreu HMC, Arruda P, Filho JCB, Burnquist WL, Creste S, Ciero L, Ferro JA, Figueira AVO, Filgueiras TS, Grossi-de-Sá MF, Guzzo EC, Hoffmann HP, Landell MGA, Macedo N, Matsuoka S, Reinach FC, Romano E, Silva WJ, Filho MCS, Ulian EC (2011) Sugarcane (Saccharum X officinarum): A reference study for the regulation of genetically modified cultivars in Brazil. Trop Plant Biol 4:62–89

    Article  PubMed  CAS  Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera graminum. Her Majesty’s Stationery Office, London

    Google Scholar 

  • Cowan RK, Hoen DR, Schoen DJ, Bureau TE (2005) MUSTANG is a novel family of domesticated transposase genes found in diverse Angiosperms. Mol Biol Evol 22:2084–2089

    Article  PubMed  CAS  Google Scholar 

  • D’Hont A and Glaszmann JC (2001) Sugarcane genome analysis with molecular markers: a first decade of research. International Society of Sugar Cane Technologists. Proceedings of the XXIV Congress, Brisbane, Australia, pp 556–559

    Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Glaszmann JC, Rao S, Berding N (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225

    Google Scholar 

  • D’Hont A, Paulet F, Glaszmann JC (2002) Oligoclonal interspecific origin of “North Indian” and “Chinese” sugarcanes. Chromosome Res 10:253–262

    Article  PubMed  Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 7–84

    Google Scholar 

  • de Jesus EM, Cruz EA, Cruz GM, Van Sluys MA (2012) Diversification of hAT transposase paralogues in the sugarcane genome. Mol Genet Genomics 287:205–219

    Article  PubMed  CAS  Google Scholar 

  • de Setta N, Cruz G, Cruz E, Gomes K, Campos R, Hotta C, Vilela M, Vincentz M, Vautrin S, Souza G, Bérgès H, Gaiarsa J, Kitajima J, Van Sluys MA (2011) Sugarcane genome: a snapshot from 100 sequenced BACs. In: Plant and animal genomes XIX conference, San Diego, USA

    Google Scholar 

  • Devos KM (2009) Grass genome organization and evolution. Curr Opin Plant Biol 13:139–145

    Article  Google Scholar 

  • D’Hont A, Lu AH, Feldmann P, Glaszmann JC (1993) Cytoplasmic diversity in sugar cane revealed by heterologous probes. Sugar Cane 1:12–15

    Google Scholar 

  • Diao XM, Lisch D (2006) Mutator transposon in maize and MULEs in the plant genome. Yi Chuan Xue Bao 33:477–487

    PubMed  CAS  Google Scholar 

  • Domingues DS, Cruz GMQ, Metcalfe CJ, Nogueira FTS, Vicentini R, Alves CS, Van Sluys MA (2012) Analysis of plant LTR retrotransposons at the fine-scale family level reveals individual molecular patterns. BMC Genomics 13:137

    Article  PubMed  CAS  Google Scholar 

  • Döring HP, Starlinger P (1984) Barbara McClintock’s controlling elements: now at the DNA level. Cell 39:253–259

    Article  PubMed  Google Scholar 

  • Du J, Tian Z, Hans CS, Laten HM, Cannon SB, Jackson S, Shoemaker RC, Ma J (2010) Evolutionary conservation, diversity and specificity of LTR retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584–598

    Article  PubMed  CAS  Google Scholar 

  • Garsmeur O, Charron C, Bocs S, Jouffe V, Samain S, Couloux A, Droc G, Zini C, Glaszmann JC, Van Sluys MA, D’Hont A (2011) High homologous gene conservation despite extreme autopolyploid redundancy in sugarcane. New Phytol 189:629–642

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28

    Article  CAS  Google Scholar 

  • Grass Phylogeny Working Group (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Mo Bot Gard 88:373–457

    Article  Google Scholar 

  • Grivet L, Daniels C, Glaszmann J, D’Hont A (2004) A review of recent molecular genetics evidence for sugarcane evolution and domestication. Ethnobot Res Appl 2:9–17

    Google Scholar 

  • Grivet L, Glaszmann J, D’Hont A (2006) Molecular evidence of sugarcane evolution and domestication. In: Motley T, Nyree Z, Cross H (eds) Darwin’s harvest, new approaches to the origins, evolution and conservation of crops. Columbia University Press, New York, NY, pp 49–66

    Google Scholar 

  • Hawkins JS, Kim H, Nason JD (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    Article  PubMed  CAS  Google Scholar 

  • Hehl R, Nacken WK, Krause A, Saedler H, Sommer H (1991) Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize. Plant Mol Biol 16:369–371

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison JS, Brandes A, Taketa S, Schmidt T, Vershinin A, Alkhimova EG, Kamm A, Doudrick RL, Schwarzacher T, Katsiotis A, Kubis S, Kumar A, Pearce SR, Flavell A, Harrison GE (1997) The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100:197–204

    Article  PubMed  CAS  Google Scholar 

  • Hua-Van A, Le Rouzic A, Boutin TS, Filée J, Capy P (2011) The struggle for life of the genome’s selfish architects. Biol Direct 6:19

    Article  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jannoo N, Grivet L, Seguin M, Paulet F, Domaingue R, Rao PS, Dookun A, D'Hont A, Glaszmann JC (1999) Molecular investigation of the genetic base of sugarcane cultivars. Theor Appl Genet 99:171–184

    Google Scholar 

  • Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann JC, Arruda P, D’Hont A (2007) Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J 50:574–585

    Article  PubMed  CAS  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198

    Article  PubMed  CAS  Google Scholar 

  • Kempken F, Windhofer F (2001) The hAT family: a versatile transposon group common to plants, fungi, animals, and man. Chromosoma 110:1–9

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant Retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Lebot V (1999) Biomolecular evidence for crop domestication on Sahul. Genet Resour Crop Evol 46:619–628

    Article  Google Scholar 

  • Lim KY, Soltis DE, Soltis PS, Tate J, Matyasek R, Srubarova H, Kovarik A, Pires JC, Xiong Z, Leitch AR (2008) Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PLoS One 3:e3353

    Article  PubMed  Google Scholar 

  • Lisch DR (2002) Mutator transposons. Trends Plant Sci 7:498–504

    Article  PubMed  CAS  Google Scholar 

  • Lisch DR, Freeling M, Langham RJ, Choy MY (2001) Mutator transposase is widespread in the grasses. Plant Physiol 125:1293–1303

    Article  PubMed  CAS  Google Scholar 

  • Llorens C, Futami R, Covelli L, Domínguez-Escribá L, Viu JM, Tamarit D, Aguilar-Rodríguez J, Vicente-Ripolles M, Fuster G, Bernet GP, Maumus F, Munoz-Pomer A, Sempere JM, Latorre A, Moya A (2011) The Gypsy database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 39:D70–D74

    Article  PubMed  Google Scholar 

  • Lu YH, D’Hont AD, Walker DIT, Rao PS, Felmann P, Glaszmann JC (1994) Relationships among ancestral species of sugarcane revealed using RFLP using single copy maize nuclear probes. Euphytica 78:7–18

    Article  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR retrotransposon structures reveals recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  PubMed  CAS  Google Scholar 

  • Manetti ME, Rossi M, Cruz GM, Saccaro NL Jr, Nakabashi M, Altebarmakian V, Rodier-Goud M, Domingues D, D'Hont A, Van Sluys MA (2012) Mutator system derivatives isolated from sugarcane genome sequence. Trop Plant Biol 5:233–243

    Article  PubMed  CAS  Google Scholar 

  • Marconi TG, Costa EA, Miranda HR, Mancini MC, Cardoso-Silva CB, Oliveira KM, Pinto LR, Mollinari M, Garcia AA, Souza AP (2011) Functional markers for gene mapping and genetic diversity studies in sugarcane. BMC Res Notes 4:264

    Article  PubMed  Google Scholar 

  • Marfil CF, Masuelli RW, Davison J, Comai L (2006) Genomic instability in Solanum tuberosum x Solanum kurtzianum interspecific hybrids. Genome 49:104–113

    PubMed  CAS  Google Scholar 

  • McClintock B (1951) Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol 16:13–47

    Article  PubMed  CAS  Google Scholar 

  • McGinnis W, Shermoen AW, Beckendorf SK (1983) A transposable element inserted just 5′ to a Drosophila glue protein gene alters gene expression and chromatin structure. Cell 34:75–84

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    PubMed  CAS  Google Scholar 

  • Mizuno H, Ito K, Wu J, Tanaka T, Kanamori H, Katayose Y, Sasaki T, Matsumoto T (2006) Identification and mapping of expressed genes, simple sequence repeats and transposable elements in centromeric regions of rice chromosomes. DNA Res 13:267–274

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Murata M (2005) Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Res 13:195–203

    Article  PubMed  CAS  Google Scholar 

  • Nobuta K, Lu C, Shrivastava R, Pillay M, De Paoli E, Accerbi M, Arteaga-Vazquez M, Sidorenko L, Jeong DH, Yen Y, Green PJ, Chandler VL, Meyers BC (2008) Distinct size distribution of endogenous siRNAs in maize: evidence from deep sequencing in the mop1-1 mutant. Proc Natl Acad Sci USA 105:14958–14963

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Feltus FA, Tang H, Lin L, Wang X (2009a) Comparative genomics of grasses promises a bountiful harvest. Plant Physiol 149:125–131

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman WD, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009b) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Freeling M, Tang H, Wang X (2010) Insights from the comparison of plant genome sequences. Annu Rev Plant Biol 61:349–372

    Article  PubMed  CAS  Google Scholar 

  • Piperidis G, Piperidis N, D’Hont A (2010) Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Genet Genomics 284:65–73

    Article  PubMed  CAS  Google Scholar 

  • Renny-Byfield S, Chester M, Kovarík A, Le Comber SC, Grandbastien M-A, Deloger M, Nichols RA, Macas J, Novák P, Chase MW, Leitch AR (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843–2854

    Article  PubMed  CAS  Google Scholar 

  • Roach BT (1972) Nobilisation of sugarcane. Proc Int Soc Sugar Cane Technol 14:206–216

    Google Scholar 

  • Robertson DS (1978) Characterization of a Mutator system in maize. Mutat Res 51:21–28

    Article  Google Scholar 

  • Rossi M, Araujo PG, Van Sluys MA (2001) Survey of transposable elements in sugarcane expressed sequence tags (ESTs). Genet Mol Biol 24:147–154

    Article  CAS  Google Scholar 

  • Rossi M, Araujo PG, de Jesus EM, Varani AM, Van Sluys MA (2004) Comparative analysis of Mutator-like transposases in sugarcane. Mol Genet Genomics 272:194–203

    Article  PubMed  CAS  Google Scholar 

  • Rubin E, Lithwick G, Levy AA (2001) Structure and evolution of the hAT transposon superfamily. Genetics 158:949–957

    PubMed  CAS  Google Scholar 

  • Saccaro-Junior NL, Van Sluys MA, Varani AM, Rossi M (2007) MudrA-like sequences from rice and sugarcane cluster as two bona fide transposon clades and two domesticated transposases. Gene 392:117–125

    Article  Google Scholar 

  • Salina EA, Sergeeva EM, Adonina IG, Shcherban AB, Belcram H, Huneau C, Chalhoub B (2011) The impact of Ty3-gypsy group LTR retrotransposons Fatima on B-genome specificity of polyploid wheats. BMC Plant Biol 11:99

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20:11–24

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Shapiro JA (2010) Mobile DNA and evolution in the 21st century. Mob DNA 1:4

    Article  PubMed  Google Scholar 

  • Somerville C (2006) The billion-ton biofuels vision. Science 312:1277

    Article  PubMed  CAS  Google Scholar 

  • Souza GM, Berges H, Bocs S, Casu R, D’Hont A, Ferreira JE, Henry R, Ming R, Potier B, Sluys MAV, Vincentz M, Paterson AH (2011) The sugarcane genome challenge: strategies for sequencing a highly complex genome. Trop Plant Biol 4:145–156

    Article  CAS  Google Scholar 

  • Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 211–253

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–810

    Article  Google Scholar 

  • Theuri J, Phelps-Durr T, Mathews S, Birchler J (2005) A comparative study of retrotransposons in the centromeric regions of A and B chromosomes of maize. Cytogenet Genome Res 110:203–208

    Article  PubMed  CAS  Google Scholar 

  • Tomkins J, Yu Y, Miller-Smith H, Frisch D, Woo S, Wing R (1999) A bacterial artificial chromosome library for sugarcane. Theor Appl Genet 99:419–424

    Article  PubMed  CAS  Google Scholar 

  • Ungerer MC, Strakosh SC, Stimpson KM (2009) Proliferation of Ty3/gypsy-like retrotransposons in hybrid sunflower taxa inferred from phylogenetic data. BMC Biol 7:40

    Article  PubMed  Google Scholar 

  • Vettore AL, da Silva FR, Kemper EL, Souza GM, da Silva AM, Ferro MI, Henrique-Silva F, Giglioti EA, Lemos MV, Coutinho LL, Nobrega MP, Carrer H, Franca SC, Bacci Junior M, Goldman MH, Gomes SL, Nunes LR, Camargo LE, Siqueira WJ, Van Sluys MA, Thiemann OH, Kuramae EE, Santelli RV, Marino CL, Targon ML, Ferro JA, Silveira HC, Marini DC, Lemos EG, Monteiro-Vitorello CB, Tambor JH, Carraro DM, Roberto PG, Martins VG, Goldman GH, de Oliveira RC, Truffi D, Colombo CA, Rossi M, de Araujo PG, Sculaccio SA, Angella A, Lima MM, de Rosa Júnior VE, Siviero F, Coscrato VE, Machado MA, Grivet L, Di Mauro SM, Nobrega FG, Menck CF, Braga MD, Telles GP, Cara FA, Pedrosa G, Meidanis J, Arruda P (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735

    Article  PubMed  Google Scholar 

  • Vitte C, Panaud O, Quesneville H (2007) LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss. BMC Genomics 8:218

    Article  PubMed  Google Scholar 

  • Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H, Chen C, Najar F, Wiley G, Bowers J, Van Sluys MA, Rokhsar DS, Hudson ME, Moose SP, Paterson AH, Ming R (2010) Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics 11:261

    Article  PubMed  Google Scholar 

  • Weber B, Schmidt T (2009) Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere contain a putative chromodomain. Chromosome Res 17:379–396

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Dooner HK (2005) Mx-rMx, a family of interacting transposons in the growing hAT superfamily of maize. Plant Cell 17:375–388

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Wright SI, Bureau T (2000) Mutator elements in Arabidopsis thaliana: structure, diversity and evolution. Genetics 156:2019–2031

    PubMed  CAS  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from FAPESP-BIOEN (08/52074-0) and CNPq to MAVS. NS, CJM and GMQC are supported by FAPESP fellowships; EAOC is supported by CNPq fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Anne Van Sluys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Setta, N., Metcalfe, C.J., Cruz, G.M.Q., Ochoa, E.A., Van Sluys, MA. (2012). Noise or Symphony: Comparative Evolutionary Analysis of Sugarcane Transposable Elements with Other Grasses. In: Grandbastien, MA., Casacuberta, J. (eds) Plant Transposable Elements. Topics in Current Genetics, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31842-9_10

Download citation

Publish with us

Policies and ethics