A Voting Procedure Supported by a Neural Validity Classifier for Optic Disk Detection

  • Leonarda Carnimeo
  • Anna Cinzia Benedetto
  • Giuseppe Mastronardi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 304)


In this work a Voting Procedure supported by a Neural Validity Classifier for assuring a correct localization of the reference point of optic disk in retinal imaging is proposed. A multiple procedure with multiple resulting points is briefly described. A Neural Network behaving as a Validity Classifier of regular/abnormal solutions is then synthesized to validate the adequacy of the resulting midpoints as candidate reference points. A Voting Procedure, supported by the synthesized Neural Validity Classifier, is successively performed, by comparing only candidate pixels classified as valid ones. In this way, the most suitable and reliable candidate can be voted to be adopted as the reference point of OD in successive retinal analyses.


Retinal Image Analysis Computer Aided Diagnosis Optic Disc Detection Neural Classifier 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramoff, M.D., Garvin, M.K., Sonka, M.: Retinal Imaging and image Analysis. IEEE Reviews in Biomedical Eng. 3, 169–208 (2010)CrossRefGoogle Scholar
  2. 2.
    Bevilacqua, V., Carnimeo, L., Mastronardi, G., Santarcangelo, V., Scaramuzzi, R.: On the Comparison of NN-Based Architectures for Diabetic Damage Detection in Retinal Images. J. of Circuits, Systems & Computers 18(8), 1369–1380 (2009)CrossRefGoogle Scholar
  3. 3.
    Zhang, Z., Lee, B., Liu, J., Wong, D., Tan, N., Lim, J., Yin, F., Huang, W., Li, H., Wong, T.: Optic Disc Region of Interest Localization in Fundus Image for Glaucoma Detection in ARGALI. In: 5th IEEE Conf. on Industrial Electronics & Appl., New York, pp. 1686–1689 (2010)Google Scholar
  4. 4.
    Sekhar, S., Al-Nuaimy, W., Nandi, A.K.: Automated Localization of Retinal Optic Disk Using Hough Transform. In: 5th IEEE Int. Symposium on Biomedical Imaging: from Nano to Macro, pp. 1577–1580. IEEE Press, New York (2008)CrossRefGoogle Scholar
  5. 5.
    Aquino, A., Gegúndez-Arias, M.E., Marín, D.: Detecting the Optic Disc Boundary in Digital Fundus Images Using Morphological, edge detection and feature extraction techniques. IEEE Trans. on Medical Imaging 29(11), 1860–1869 (2010)CrossRefGoogle Scholar
  6. 6.
    Harangi, B., Qureshi, R.J., Csutak, A., Peto, T., Hajadu, A.: Automatic Detection of the Optic Disc Using Majority Voting in a Collection of Optic Disc Detectors. In: IEEE Int. Symp. on Biom. Imaging from Nano to Macro, pp. 1329–1332. IEEE Press, New York (2010)CrossRefGoogle Scholar
  7. 7.
    Carnimeo, L., Bevilacqua, V., Cariello, L., Mastronardi, G.: Retinal Vessel Extraction by a Combined Neural Network–Wavelet Enhancement Method. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS (LNAI), vol. 5755, pp. 1106–1116. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Bevilacqua, V., Mastronardi, G., Colaninno, A., D’Addabbo, A.: Retina Images using Ge-netic Algorithm and Maximum Likelihood Method. In: Int. Conf. on Advances in Computer Science and Technology. IASTED Press, US Virgin Island (2004)Google Scholar
  9. 9.
    Niemeijer, M., Staal, J.J., van Ginneken, B., Loog, M., Abramoff, M.D.: DRIVE Retinal Database from Comparative Study of Retinal Vessel Segmentation Methods on a New Publicly Available Database,
  10. 10.
    Otsu, N.: A Threshold Selection Method from Gray-scale Histogram. IEEE Trans. on SMC 9(1), 62–66 (1979)MathSciNetGoogle Scholar
  11. 11.
    Li, H., Chutatape, O.: Automatic Location of Optic Disc in Retinal Images. In: IEEE Int. Conf. on Image Processing, pp. 837–840. IEEE Press, New York (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Leonarda Carnimeo
    • 1
  • Anna Cinzia Benedetto
    • 1
  • Giuseppe Mastronardi
    • 1
  1. 1.Dept. of Electrical and Electronic EngineeringPolitecnico di BariBariItaly

Personalised recommendations