B-Spline Neural Networks Based PID Controller for Hammerstein Systems

  • Xia Hong
  • Serdar Iplikci
  • Sheng Chen
  • Kevin Warwick
Part of the Communications in Computer and Information Science book series (CCIS, volume 304)

Abstract

A new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on the B-spline neural networks and the associated Jacobians matrix are calculated using the De Boor algorithms including both the functional and derivative recursions. A numerical example is utilized to demonstrate the efficacy of the proposed approaches.

Keywords

Hammerstein model PID controller system identification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anbumani, K., Patnaik, L.M., Sarma, I.G.: Self-tuning minimum variance control of nonlinear systems of the Hammerstein model. IEEE Transactions on Automatic Control AC-26(4), 959–961 (1981)Google Scholar
  2. 2.
    Bloemen, H.H.J., Boom, T.J.V.D., Verbruggen, H.B.: Model-based predictive control for Hammerstein-Wiener systems. International Journal of Control 74(5), 482–295 (2001)Google Scholar
  3. 3.
    de Boor, A.: Practical Guide to Splines. Springer, New York (1978)MATHCrossRefGoogle Scholar
  4. 4.
    Chen, J., Huang, T.: Applying neural networks to on-line updated PID controllers for nonlnear process control. Journal of Process Control 14, 211–230 (2004)CrossRefGoogle Scholar
  5. 5.
    Harris, C.J., Hong, X., Gan, Q.: Adaptive Modelling, Estimation and Fusion from Data: A Neurofuzzy Approach. Springer (2002)Google Scholar
  6. 6.
    Hong, X., Mitchell, R.J.: A Hammerstein model identification algorithm using bezier-bernstein approximation. IET Proc. Control Theory and Applications 1(4), 1149–1159 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hunter, I.W., Korenberg, M.J.: The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biological Cybernetics 55(2-3), 135–144 (1986)MathSciNetMATHGoogle Scholar
  8. 8.
    Iplikci, S.: A comparative study on a novel model-based PID tuning and control mechanism for nonlinear systems. International Journal of Robust and Nonlinear Control 20(13), 1483–1501 (2010)MathSciNetMATHGoogle Scholar
  9. 9.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)MATHCrossRefGoogle Scholar
  10. 10.
    Parlos, A.G., Parthasarathy, S., Atiya, A.F.: Neuro-predicitive process control using on-line controller adaptation. IEEE Transactions on Control Systems Technology 9, 741–755 (2001)CrossRefGoogle Scholar
  11. 11.
    Venkataraman, P.: Applied Optimization with MATLAB Programming. Wiley Interscience, New York (2002)Google Scholar
  12. 12.
    Zhang, M., Li, W., Liu, M.: Adaptive PID control strategy based on RBF neural network identification. In: Proceedings of the ICNNB International Conference on Neural Networks and Brain, Beijing, China, pp. 1854–1857 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xia Hong
    • 1
  • Serdar Iplikci
    • 2
  • Sheng Chen
    • 3
  • Kevin Warwick
    • 4
  1. 1.School of Systems EngineeringUniversity of ReadingUK
  2. 2.Department of Electrical and Electronics EngineeringPamukkale UniversityDenizliTurkey
  3. 3.School of Electronics and Computer ScienceUniversity of SouthamptonUK
  4. 4.Faculty of EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations