Bisociative Knowledge Discovery pp 11-32

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7250) | Cite as

Towards Creative Information Exploration Based on Koestler’s Concept of Bisociation

  • Werner Dubitzky
  • Tobias Kötter
  • Oliver Schmidt
  • Michael R. Berthold

Abstract

Creative information exploration refers to a novel framework for exploring large volumes of heterogeneous information. In particular, creative information exploration seeks to discover new, surprising and valuable relationships in data that would not be revealed by conventional information retrieval, data mining and data analysis technologies. While our approach is inspired by work in the field of computational creativity, we are particularly interested in a model of creativity proposed by Arthur Koestler in the 1960s. Koestler’s model of creativity rests on the concept of bisociation. Bisociative thinking occurs when a problem, idea, event or situation is perceived simultaneously in two or more “matrices of thought” or domains. When two matrices of thought interact with each other, the result is either their fusion in a novel intellectual synthesis or their confrontation in a new aesthetic experience. This article discusses some of the foundational issues of computational creativity and bisociation in the context of creative information exploration.

References

  1. 1.
    Adams, M.P.: Empirical evidence and the knowledge-that/knowledge-how distinction. Synthese 170, 97–114 (2009)CrossRefGoogle Scholar
  2. 2.
    Ananiadou, S., Kell, D.B., Tsujii, J.-I.: Text mining and its potential applications in systems biology. Trends in biotechnology 24(12), 571–579 (2006)CrossRefGoogle Scholar
  3. 3.
    Barron, F.: Putting creativity to work. In: Sternberg, R.J. (ed.) The Nature of Creativity, pp. 76–98. Cambridge University Press, Cambridge (1988)Google Scholar
  4. 4.
    Bekhuis, T.: Conceptual biology, hypothesis discovery, and text mining: Swanson’s legacy. Biomedical Digital Libraries 3, 2 (January 2006)CrossRefGoogle Scholar
  5. 5.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data – the story so far. International Journal on Semantic Web and Information Systems (IJSWIS) 5(3), 1–22 (2009)CrossRefGoogle Scholar
  6. 6.
    Boden, M.A.: Précis of the creative mind: Myths and mechanisms. Behavioural and Brain Sciences 17, 519–570 (1994)CrossRefGoogle Scholar
  7. 7.
    Boden, M.A.: Computer models of creativity. In: Sternberg, R.J. (ed.) Handbook of Creativity, pp. 351–372. Cambridge University Press, Cambridge (1999)Google Scholar
  8. 8.
    Bridewell, W., Langley, P.: Symposium on computational aproaches to creativity in science. Final report for NSF grant IIS-0819656. Technical report, Institute for the Study of Learning and Expertise (2008), http://cll.stanford.edu/symposia/creativity/text/scacs08.report.pdf
  9. 9.
    Chalmers, D.J., French, R.M., Hofstadter, D.R.: High-level perception, representation, and analogy: A critique of artificial intelligence methodology. Journal of Experimental and Theoretical Artificial Intelligence 4, 185–211 (1992)CrossRefGoogle Scholar
  10. 10.
    Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D., Rice, J.: OKBC: A programmatic foundation for knowledge base interoperability. In: Proceedings of the 15th National Conference on Artificial Intelligence (AAAI 1998), Madison, Wisconsin, USA, pp. 600–607 (1998)Google Scholar
  11. 11.
    Einstein, A.: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 17, 132–148 (1905)CrossRefMATHGoogle Scholar
  12. 12.
    Falkenhainer, B., Forbus, K.D., Gentner, D.: The structure-mapping engine. Artificial Intelligence 41, 1–63 (1989)CrossRefMATHGoogle Scholar
  13. 13.
    Gentner, D.: Structure-mapping: A theoretical framework for analogy. Cognitive Science 7(2), 155–170 (1983)CrossRefGoogle Scholar
  14. 14.
    Gentner, D., Colhoun, J.: Analogical process of human thinking and learning. In: Glatzeder, B.M., Goel, V., von Muller, A. (eds.) Towards a Theory of Thinking. On Thinking, pp. 35–48. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Gero, J.S.: Computational models of innovative and creative design processes. Technological Forecasting and Social Change 64(2-3), 183–196 (2000)CrossRefGoogle Scholar
  16. 16.
    Good, J.: A five-year plan for automatic chess. Machine Intelligence 2, 110–115 (1968)Google Scholar
  17. 17.
    Hall, R.P.: Computational approaches to analogical reasoning: A comparative analysis. Artificial Intelligence 39, 39–120 (1989)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Han, J.: Mining Heterogeneous Information Networks by Exploring the Power of Links. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS (LNAI), vol. 5808, pp. 13–30. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Higgins, J.M.: 101 Creative problem solving techniques. New Management Publishing Company (1994)Google Scholar
  20. 20.
    Koestler, A.: The act of creation. Penguin Books, New York (1964)Google Scholar
  21. 21.
    Kostoff, R.N.: Literature-Related Discovery (LRD): Introduction and background. Technological Forecasting and Social Change 75(2), 165–185 (2008)CrossRefGoogle Scholar
  22. 22.
    Kumar, M.: Quantum: Einstein, Bohr and the great debate about the nature of reality. Icon Books Ltd. (2008)Google Scholar
  23. 23.
    Kurzweil, R.: The age of intelligent machines. Massachusetts Institute of Technology (1990)Google Scholar
  24. 24.
    Lenat, D.B., Guha, R.V., Pittman, K., Pratt, D., Shepherd, M.: Cyc: Toward programs with common sense. Communications of the ACM 33, 30–49 (1990)CrossRefGoogle Scholar
  25. 25.
    McGarry, K.: A survey of interestingness measures for knowledge discovery. The Knowledge Engineering Review 20(1), 39–61 (2005)CrossRefGoogle Scholar
  26. 26.
    Minsky, M.: K-lines: A theory of memory. Cognitive Science 4, 117–133 (1980)CrossRefGoogle Scholar
  27. 27.
    Morrison, C.T., Dietrich, E.: Structure-mapping vs. high-level perception: The mistaken fight over the explanation of analogy. In: Proceedings of the 17th Annual Conference of the Cognitive Science Society, pp. 678–682 (1995)Google Scholar
  28. 28.
    Natarajan, J., Berrar, D., Hack, C.J., Dubitzky, W.: Knowledge discovery in biology and biotechnology texts: A review of techniques. Critical Reviews in Biotechnology 25(1/2), 31–52 (2005)CrossRefGoogle Scholar
  29. 29.
    Schaeffer, J., Culberson, J., Treloar, N., Knight, B., Lu, P., Szafron, D.: A world championship caliber checkers program. Artificial Intelligence 53(2-3), 273–290–115 (1992)Google Scholar
  30. 30.
    Smith, E.E., Medin, D.L.: Categories and concepts. Harvard University Press, Cambridge (1981)CrossRefGoogle Scholar
  31. 31.
    Sosa, R., Gero, J.S.: A computational framework for the study of creativity and innovation in design: Effects of social ties. In: Gero, J.S. (ed.) Design Computing and Cognition 2004, pp. 499–517. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  32. 32.
    Sowa, J., Majumdar, A.K.: Analogical Reasoning. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746, pp. 16–36. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  33. 33.
    Swanson, D.R.: Fish oil, Raynaud’s syndrome, and undiscovered public knowledge. Perspectives in Biology and Medicine 30(1), 7–18 (1986)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012 2012

Authors and Affiliations

  • Werner Dubitzky
    • 1
  • Tobias Kötter
    • 2
  • Oliver Schmidt
    • 1
  • Michael R. Berthold
    • 2
  1. 1.University of UlsterColeraineUK
  2. 2.University of KonstanzKonstanzGermany

Personalised recommendations