Advertisement

Characterizing Graphs of Small Carving-Width

  • Rémy Belmonte
  • Pim van ’t Hof
  • Marcin Kamiński
  • Daniël Paulusma
  • Dimitrios M. Thilikos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7402)

Abstract

We characterize all graphs that have carving-width at most k for k = 1,2,3. In particular, we show that a graph has carving-width at most 3 if and only if it has maximum degree at most 3 and treewidth at most 2. This enables us to identify the immersion obstruction set for graphs of carving-width at most 3.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Khzam, F.N., Langston, M.A.: Graph Coloring and the Immersion Order. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 394–403. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees. SIAM J. Algebraic Discrete Methods 7(2), 305–314 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209(1-2), 1–45 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L., Thilikos, D.M.: Graphs with branchwidth at most three. Journal of Algorithms 32(2), 167–194 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    DeVos, M., Dvořák, Z., Fox, J., McDonald, J., Mohar, B., Scheide, D.: Minimum degree condition forcing complete graph immersion. CoRR, arXiv:1101.2630 (January 2011)Google Scholar
  6. 6.
    Diestel, R.: Graph Theory, Electronic edn. Springer (2005)Google Scholar
  7. 7.
    Dvořák, Z., Giannopoulou, A.C., Thilikos, D.M.: Forbidden graphs for tree-depth. European Journal of Combinatorics 33(5), 969–979 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological subgraphs is fixed-parameter tractable. In: Proceedings of STOC 2011, pp. 479–488. ACM (2011)Google Scholar
  9. 9.
    Kawarabayashi, K., Kobayashi, Y.: List-coloring graphs without subdivisions and without immersions. In: Proceedings of SODA 2012, pp. 1425–1435. SIAM (2012)Google Scholar
  10. 10.
    Khuller, S., Raghavachari, B., Young, N.: Designing multicommodity flow trees. Information Processing Letters 50, 49–55 (1994)zbMATHCrossRefGoogle Scholar
  11. 11.
    Koutsonas, A., Thilikos, D.M., Yamazaki, K.: Outerplanar obstructions for matroid pathwidth. Electronic Notes in Discrete Mathematics 38, 541–546 (2011)CrossRefGoogle Scholar
  12. 12.
    Robertson, N., Seymour, P.D., Thomas, R.: Linkless embeddings of graphs in 3-space. Bull. Amer. Math. Soc. 28, 84–89 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Robertson, N., Seymour, P.D.: Graph minors XXIII. Nash-Williams’ immersion conjecture. Journal of Combinatorial Theory, Series B 100, 181–205 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Rué, J., Stavropoulos, K.S., Thilikos, D.M.: Outerplanar obstructions for a feedback vertex set. European Journal of Combinatorics 33, 948–968 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Takahashi, A., Ueno, S., Kajitani, Y.: Minimal acyclic forbidden minors for the family of graphs with bounded path-width. Discrete Mathematics 127, 293–304 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Thilikos, D.M.: Algorithms and obstructions for linear-width and related search parameters. Discrete Applied Mathematics 105, 239–271 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Constructive Linear Time Algorithms for Small Cutwidth and Carving-Width. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 192–203. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rémy Belmonte
    • 1
  • Pim van ’t Hof
    • 1
  • Marcin Kamiński
    • 2
  • Daniël Paulusma
    • 3
  • Dimitrios M. Thilikos
    • 4
  1. 1.Department of InformaticsUniversity of BergenNorway
  2. 2.Département d’InformatiqueUniversité Libre de BruxellesBelgium
  3. 3.School of Engineering and Computing SciencesDurham UniversityUK
  4. 4.Department of MathematicsNational & Kapodistrian University of AthensAthensGreece

Personalised recommendations