Dynamic Programming for a Biobjective Search Problem in a Line

  • Luís Paquete
  • Mathias Jaschob
  • Kathrin Klamroth
  • Jochen Gorski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7402)


In this article we study the performance of multiobjective dynamic programming for a biobjective combinatorial optimization problem under several formulations. Based on our theoretical and computational results we argue that a clever definition of the recursion, allowing for strong dominance criteria, is crucial in the design of a multiobjective dynamic programming algorithm.


Multiobjective combinatorial optimization dynamic programming shortest path problems knapsack problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algorithms and Applications. Prentice-Hall (1993)Google Scholar
  2. 2.
    Bazgan, C., Hugot, H., Vanderpooten, D.: Solving efficiently the 0-1 multi-objective knapsack problem. Computers & Operations Research 36(1), 260–276 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Brown, T., Strauch, R.: Dynamic programming in multiplicative lattices. Journal of Mathematical Analysis and Applications 12, 364–370 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Delling, D., Wagner, D.: Pareto Paths with SHARC. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 125–136. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer (2005)Google Scholar
  6. 6.
    Gaver, D., Jacobs, P., Pilnick, S.: On minefield transit by detection, avoidance and demining. In: Bottoms, A., Scandrett, C. (eds.) Applications of Technology to Demining, an Anthology of Scientific Papers 1995-2005, Part 3 – Naval Mine Countermeasures, Society for Countermine Technology (2005)Google Scholar
  7. 7.
    Hansen, P.: Bicriterion path problems. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making, Theory and Application. Lecture Notes in Economics and Mathematical Systems, vol. 177, pp. 109–127. Springer (1980)Google Scholar
  8. 8.
    Henig, M.: Vector-value dynamic programming. SIAM Journal on Control and Optimization 21, 490–499 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)Google Scholar
  10. 10.
    Klamroth, K., Wiecek, M.: Dynamic programming approaches to the multiple criteria knapsack problem. Naval Research Logistics 47(1), 57–76 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Sodhi, M., Swaszek, P., Bovio, E.: Stochastic line search using UUVs. In: 9th International Conference on Information Fusion (ICIF 2006), pp. 1–5 (2006)Google Scholar
  12. 12.
    Stone, L.: In search of AF flight 447. ORMS Today 38(4), 22–31 (2011)Google Scholar
  13. 13.
    Villarreal, B., Karwan, M.: Multicriteria integer programming: A (hybrid) dynamic programming recursive approach. Mathematical Programming 21, 204–223 (1981)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luís Paquete
    • 1
  • Mathias Jaschob
    • 2
  • Kathrin Klamroth
    • 2
  • Jochen Gorski
    • 2
  1. 1.CISUC, Department of Informatics EngineeringUniversity of CoimbraPortugal
  2. 2.Department of Mathematics and Natural SciencesUniversity of WuppertalGermany

Personalised recommendations