Skip to main content

Inapproximability after Uniqueness Phase Transition in Two-Spin Systems

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7402))

Abstract

A two-state spin system is specified by a matrix

\( {{\rm A}= \begin{bmatrix} \hspace{0.08cm} A_{0,0} & A_{0,1}\hspace{0.08cm} \\ \hspace{0.08cm}A_{1,0} & A_{1,1}\hspace{0.08cm} \end{bmatrix} = \begin{bmatrix} \hspace{0.08cm}\beta & 1\hspace{0.08cm} \\ \hspace{0.08cm}1 & \gamma\hspace{0.08cm} \end{bmatrix} } ~~~ (1)\)

where β, γ ≥ 0. Given an input graph G = (V,E), the partition function Z A (G) of a system is defined as

\( Z_{\bf A}(G)= \sum\limits_{\sigma: V\rightarrow \{0, 1\}} \prod\limits_{(u,v) \in E} A_{\sigma(u), \sigma(v)}.~~ (2)\)

We prove inapproximability results for the partition function Z A (G) in the region specified by the non-uniqueness condition from phase transition for the Gibbs measure. More specifically, assuming \(\text{{NP}} \not=\text{{RP}}\), for any fixed β,γ in the unit square, there is no randomized polynomial-time algorithm that approximates Z A (G) for d-regular graphs G with relative error ε = 10− 4, if d = Ω(Δ(β,γ)), where Δ(β,γ) > 1/(1 − βγ) is the uniqueness threshold. Up to a constant factor, this hardness result confirms the conjecture that the uniqueness phase transition coincides with the transition from computational tractability to intractability for Z A (G). We also show a matching inapproximability result for a region of parameters β,γ outside the unit square, and all our results generalize to partition functions with an external field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lovász, L.: Operations with structures. Acta Mathematica Hungarica 18, 321–328 (1967)

    Article  MATH  Google Scholar 

  2. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press (2004)

    Google Scholar 

  3. Dyer, M., Greenhill, C.: The complexity of counting graph homomorphisms. In: Proceedings of the 9th International Conference on Random Structures and Algorithms, pp. 260–289 (2000)

    Google Scholar 

  4. Bulatov, A., Grohe, M.: The complexity of partition functions. Theoretical Computer Science 348(2-3), 148–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldberg, L., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for partition functions with mixed signs. SIAM Journal on Computing 39(7), 3336–3402 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, J.Y., Chen, X., Lu, P.: Graph homomorphisms with complex values: A dichotomy theorem. In: Proceedings of the 37th Colloquium on Automata, Languages and Programming (2010); To appear in SIAM Journal on Computing

    Google Scholar 

  7. Dyer, M., Goldberg, L., Paterson, M.: On counting homomorphisms to directed acyclic graphs. Journal of the ACM 54(6) (2007)

    Google Scholar 

  8. Cai, J.Y., Chen, X.: A decidable dichotomy theorem on directed graph homomorphisms with non-negative weights. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pp. 437–446 (2010)

    Google Scholar 

  9. Bulatov, A.: The complexity of the counting constraint satisfaction problem. In: Proceedings of the 35th International Colloquium on Automata, Languages and Programming, pp. 646–661 (2008)

    Google Scholar 

  10. Dyer, M., Richerby, D.: On the complexity of #CSP. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, pp. 725–734 (2010)

    Google Scholar 

  11. Cai, J.Y., Chen, X., Lu, P.: Non-negatively weighted #CSP: An effective complexity dichotomy. In: Proceedings of the 26th Annual IEEE Conference on Computational Complexity, pp. 45–54 (2011)

    Google Scholar 

  12. Cai, J.Y., Chen, X.: Complexity of counting CSP with complex weights. In: Proceedings of the 44th ACM Symposium on Theory of Computing (2012)

    Google Scholar 

  13. Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the ising model. SIAM Journal on Computing 22(5), 1087–1116 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goldberg, L., Jerrum, M., Paterson, M.: The computational complexity of two-state spin systems. Random Structures and Algorithms 23(2), 133–154 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dyer, M., Frieze, A., Jerrum, M.: On counting independent sets in sparse graphs. SIAM Journal on Computing 31, 1527–1541 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weitz, D.: Counting independent sets up to the tree threshold. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 140–149 (2006)

    Google Scholar 

  17. Sinclair, A., Srivastava, P., Thurley, M.: Approximation algorithms for two-state anti-ferromagnetic spin systems on bounded degree graphs. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (2012)

    Google Scholar 

  18. Li, L., Lu, P., Yin, Y.: Approximate counting via correlation decay in spin systems. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (2012)

    Google Scholar 

  19. Li, L., Lu, P., Yin, Y.: Correlation decay up to uniqueness in spin systems. arXiv:1111.7064 (2011)

    Google Scholar 

  20. Bandyopadhyay, A., Gamarnik, D.: Counting without sampling: Asymptotics of the log-partition function for certain statistical physics models. Random Structures and Algorithms 33, 452–479 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sly, A.: Computational transition at the uniqueness threshold. In: Proceedings of the IEEE 51st Annual Symposium on Foundations of Computer Science (2010)

    Google Scholar 

  22. Galanis, A., Ge, Q., Štefankovič, D., Vigoda, E., Yang, L.: Improved inapproximability results for counting independent sets in the hard-core model. In: Proceedings of the 15th International Workshop on Randomization and Computation, pp. 567–578 (2011)

    Google Scholar 

  23. Cai, J.Y., Chen, X., Guo, H., Lu, P.: Inapproximability after uniqueness phase transition in two-spin systems. University of Wisconsin, Madison CS Technical Report (2011), http://digital.library.wisc.edu/1793/61488

  24. Mossel, E., Weitz, D., Wormald, N.: On the hardness of sampling independent sets beyond the tree threshold. Probability Theory and Related Fields 143, 401–439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Håstad, J.: Some optimal inapproximability results. Journal of the ACM 48, 798–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cai, JY., Chen, X., Guo, H., Lu, P. (2012). Inapproximability after Uniqueness Phase Transition in Two-Spin Systems. In: Lin, G. (eds) Combinatorial Optimization and Applications. COCOA 2012. Lecture Notes in Computer Science, vol 7402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31770-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31770-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31769-9

  • Online ISBN: 978-3-642-31770-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics