Multicut on Graphs of Bounded Clique-Width

  • Martin Lackner
  • Reinhard Pichler
  • Stefan Rümmele
  • Stefan Woltran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7402)

Abstract

Several variants of Multicut problems arise in applications like circuit and network design. In general, these problems are NP-complete. The goal of our work is to investigate the potential of clique-width for identifying tractable fragments of Multicut. We show for several parameterizations involving clique-width whether they lead to tractability or not. Since bounded tree-width implies bounded clique-width, our tractability results extend previous results via tree-width, in particular to dense graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 459–468. ACM, New York (2011)Google Scholar
  2. 2.
    Calinescu, G., Fernandes, C.G., Reed, B.: Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width. J. Algorithms 48(2), 333–359 (2003)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34(4), 825–847 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. Syst. Sci. 46(2), 218–270 (1993)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Applied Mathematics 101(1-3), 77–114 (2000)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    El-Mallah, E.S., Colbourn, C.J.: The complexity of some edge deletion problems. IEEE Transactions on Circuits and Systems (1988)Google Scholar
  9. 9.
    Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-complete. SIAM J. Discrete Math. 23(2), 909–939 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Ganian, R., Hliněný, P.: On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width. Discrete Applied Mathematics 158(7), 851–867 (2010); Third Workshop on Graph Classes, Optimization and Width Parameters Eugene, Oregon, USA (October 2007)Google Scholar
  11. 11.
    Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and Multicut in trees. Algorithmica 18(1), 3–20 (1997)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Gottlob, G., Lee, S.T.: A logical approach to Multicut problems. Information Processing Letters 103(4), 136–141 (2007)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Guo, J., Hüffner, F., Kenar, E., Niedermeier, R., Uhlmann, J.: Complexity and Exact Algorithms for Multicut. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 303–312. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Gurski, F.: Graph operations on clique-width bounded graphs. CoRR abs/cs/0701185 (2007)Google Scholar
  15. 15.
    Gutierrez, C., Hurtado, C., Vaisman, A.: RDFS Update: From Theory to Practice. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 93–107. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Heggernes, P., Meister, D., Rotics, U.: Exploiting Restricted Linear Structure to Cope with the Hardness of Clique-Width. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 284–295. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Heggernes, P., Meister, D., Rotics, U.: Computing the Clique-Width of Large Path Powers in Linear Time via a New Characterisation of Clique-Width. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 233–246. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. The Computer Journal 51(3), 326–362 (2008)CrossRefGoogle Scholar
  19. 19.
    Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3), 394–406 (2006)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Marx, D., Razgon, I.: Fixed-parameter tractability of Multicut parameterized by the size of the cutset. In: Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 469–478. ACM, New York (2011)Google Scholar
  21. 21.
    Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Comb. Theory Ser. B 96(4), 514–528 (2006)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin Lackner
    • 1
  • Reinhard Pichler
    • 1
  • Stefan Rümmele
    • 1
  • Stefan Woltran
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyAustria

Personalised recommendations