Advertisement

SMTInterpol: An Interpolating SMT Solver

  • Jürgen Christ
  • Jochen Hoenicke
  • Alexander Nutz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7385)

Abstract

Craig interpolation is an active research topic and has become a powerful technique in verification. We present SMTInterpol, an interpolating SMT solver for the quantifier-free fragment of the combination of the theory of uninterpreted functions and the theory of linear arithmetic over integers and reals. SMTInterpol is SMTLIB 2 compliant and available under an open source software license (LGPL v3).

Keywords

Inductive Sequence Recursive Program Linear Arithmetic Resolution Proof Uninterpreted Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett, C.W., de Moura, L., Stump, A.: SMT-COMP: Satisfiability Modulo Theories Competition. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 20–23. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: 2.0. In: SMT (2010)Google Scholar
  3. 3.
    Beyer, D., Zufferey, D., Majumdar, R.: cSIsat: Interpolation for LA+EUF. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 304–308. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 384–399. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT Solver. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Cimatti, A., Griggio, A., Sebastiani, R.: Efficient Interpolant Generation in Satisfiability Modulo Theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 397–412. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Cok, D.R.: jSMTLIB: Tutorial, validation and adapter tools for SMT-LIBv2. In: NASA Formal Methods, pp. 480–486 (2011)Google Scholar
  8. 8.
    Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J. Symb. Log. 22(3), 269–285 (1957)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM 52(3), 365–473 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dillig, I., Dillig, T., Aiken, A.: Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 233–247. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast Decision Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Griggio, A., Le, T.T.H., Sebastiani, R.: Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 143–157. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: POPL (2010)Google Scholar
  15. 15.
    McMillan, K.L.: An Interpolating Theorem Prover. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    McMillan, K.L.: Interpolants from Z3 proofs. In: FMCAD (2012)Google Scholar
  18. 18.
    de Moura, L., Bjørner, N.: Model-based theory combination. Electr. Notes Theor. Comput. Sci. 198(2), 37–49 (2008)CrossRefGoogle Scholar
  19. 19.
    Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint Solving for Interpolation. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Yorsh, G., Musuvathi, M.: A Combination Method for Generating Interpolants. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jürgen Christ
    • 1
  • Jochen Hoenicke
    • 1
  • Alexander Nutz
    • 1
  1. 1.Department of Computer ScienceUniversity of FreiburgGermany

Personalised recommendations