Leveraging User Modeling on the Social Web with Linked Data

  • Fabian Abel
  • Claudia Hauff
  • Geert-Jan Houben
  • Ke Tao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7387)


Social Web applications such as Twitter and Flickr are widely used services that generate large volumes of usage data. The challenge of modeling the use and the users of such Social Web services based on their data has received a lot of attention in recent years. In this paper, we go a step further and investigate how the Linked Open Data (LOD) cloud can be leveraged as additional knowledge source in user modeling processes that exploit user data from the Social Web. Specifically, we introduce a user modeling framework that utilizes semantic background knowledge from LOD and evaluate it in the area of point of interest (POI) recommendations. For this purpose, we infer user preferences in POIs based on the users’ behavior observed on Twitter and Flickr, combined with referable evidence from the Web of Data. We compare strategies that aggregate knowledge from two LOD sources: GeoNames and DBpedia. The evaluation validates the advantages of our approach; we show that the user modeling quality improves when LOD-based background information is included in the process.


  1. 1.
    Chen, J., Nairn, R., Nelson, L., Bernstein, M., Chi, E.: Short and tweet: experiments on recommending content from information streams. In: Proc. of the 28th Int. Conf. on Human Factors in Computing Systems(CHI), pp. 1185–1194. ACM (2010)Google Scholar
  2. 2.
    Abel, F., Gao, Q., Houben, G.J., Tao, K.: Analyzing User Modeling on Twitter for Personalized News Recommendations. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 1–12. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Rowe, M., Stankovic, M.: Aligning Tweets with Events: Automation via Semantics. The Semantic Web Journal, Special Issue on Interoperability, Usability, Applicability (2011)Google Scholar
  4. 4.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. Journal on Semantic Web and Information Systems (IJSWIS) 5(3), 1–22 (2009)CrossRefGoogle Scholar
  5. 5.
    Stankovic, M., Wagner, C., Jovanovic, J., Laublet, P.: Looking for Experts? What can Linked Data do for You? In: Workshop on Linked Data on the Web (LDOW), Raleigh, USA (2010)Google Scholar
  6. 6.
    Leonardi, E., Abel, F., Heckmann, D., Herder, E., Hidders, J., Houben, G.-J.: A Flexible Rule-Based Method for Interlinking, Integrating, and Enriching User Data. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 322–336. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Cano, A.E., Varga, A., Ciravegna, F.: Volatile Classification of Point of Interests based on Social Activity Streams. In: Workshop on Social Data on the Web (SDoW), Bonn, Germany (2011)Google Scholar
  8. 8.
    Hecht, B., Hong, L., Suh, B., Chi, E.H.: Tweets from Justin Bieber’s Heart: The Dynamics of the ”Location” Field in User Profiles. In: Proc. of Int. Conf. on Human Factors in Computing Systems (CHI), Vancouver, BC, Canada. ACM (2011)Google Scholar
  9. 9.
    Golbeck, J., Hansen, D.L.: Computing Political Preference among Twitter Followers. In: Proc. of Int. Conf. on Human Factors in Computing Systems (CHI), Vancouver, BC, Canada. ACM (2011)Google Scholar
  10. 10.
    Pennacchiotti, M., Popescu, A.M.: A Machine Learning Approach to Twitter User Classification. In: Proc. of the 5th Int. AAAI Conf. on Weblogs and Social Media (ICWSM), Barcelona, Spain. AAAI Press (2011)Google Scholar
  11. 11.
    Hauff, C., Houben, G.-J.: Geo-Location Estimation of Flickr Images: Social Web Based Enrichment. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 85–96. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fabian Abel
    • 1
  • Claudia Hauff
    • 1
  • Geert-Jan Houben
    • 1
  • Ke Tao
    • 1
  1. 1.Web Information SystemsDelft University of TechnologyThe Netherlands

Personalised recommendations