Twinder: A Search Engine for Twitter Streams

  • Ke Tao
  • Fabian Abel
  • Claudia Hauff
  • Geert-Jan Houben
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7387)


How can one effectively identify relevant messages in the hundreds of millions of Twitter messages that are posted every day? In this paper, we aim to answer this fundamental research question and introduce Twinder, a scalable search engine for Twitter streams. The Twinder search engine exploits various features to estimate the relevance of Twitter messages (tweets) for a given topic. Among these features are both topic-sensitive features such as measures that compute the semantic relatedness between a tweet and a topic as well as topic-insensitive features which characterize a tweet with respect to its syntactical, semantic, sentiment and contextual properties. In our evaluations, we investigate the impact of the different features on retrieval performance. Our results prove the effectiveness of the Twinder search engine - we show that in particular semantic features yield high precision and recall values of more than 35% and 45% respectively.


Contextual Feature Twitter User Relevance Estimation Negative Sentiment Twitter Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: WWW, pp. 591–600. ACM (2010)Google Scholar
  2. 2.
    Teevan, J., Ramage, D., Morris, M.R.: #TwitterSearch: a comparison of microblog search and web search. In: WSDM, pp. 35–44. ACM (2011)Google Scholar
  3. 3.
    Bernstein, M.S., Suh, B., Hong, L., Chen, J., Kairam, S., Chi, E.H.: Eddi: interactive topic-based browsing of social status streams. In: UIST, pp. 303–312. ACM (2010)Google Scholar
  4. 4.
    Abel, F., Celik, I., Houben, G.-J., Siehndel, P.: Leveraging the Semantics of Tweets for Adaptive Faceted Search on Twitter. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 1–17. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Golovchinsky, G., Efron, M.: Making sense of twitter search. In: CHI Workshop on Microblogging: What and How Can We Learn From It? (2010)Google Scholar
  6. 6.
    Dong, A., Zhang, R., Kolari, P., Bai, J., Diaz, F., Chang, Y., Zheng, Z., Zha, H.: Time is of the essence: improving recency ranking using twitter data. In: WWW, pp. 331–340. ACM (2010)Google Scholar
  7. 7.
    Chen, J., Nairn, R., Chi, E.H.: Speak Little and Well: Recommending Conversations in Online Social Streams. In: CHI. ACM (2011)Google Scholar
  8. 8.
    Duan, Y., Jiang, L., Qin, T., Zhou, M., Shum, H.Y.: An empirical study on learning to rank of tweets. In: COLING, Association for Computational Linguistics, pp. 295–303 (2010)Google Scholar
  9. 9.
    Mathioudakis, M., Koudas, N.: Twittermonitor: trend detection over the twitter stream. In: SIGMOD, pp. 1155–1158. ACM (2010)Google Scholar
  10. 10.
    Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influential twitterers. In: WSDM, pp. 261–270. ACM (2010)Google Scholar
  11. 11.
    Jadhav, A., Purohit, H., Kapanipathi, P., Ananthram, P., Ranabahu, A., Nguyen, V., Mendes, P.N., Smith, A.G., Cooney, M., Sheth, A.: Twitris 2.0: Semantically Empowered System for Understanding Perceptions From Social Data. In: Semantic Web Challenge (2010)Google Scholar
  12. 12.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: WWW, pp. 851–860. ACM (2010)Google Scholar
  13. 13.
    Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to Ad Hoc information retrieval. In: SIGIR, pp. 334–342. ACM (2001)Google Scholar
  14. 14.
    Naveed, N., Gottron, T., Kunegis, J., Alhadi, A.C.: Bad news travel fast: A content-based analysis of interestingness on twitter. In: WebSci. ACM (2011)Google Scholar
  15. 15.
    Tao, K., Abel, F., Hauff, C., Houben, G.J.: Supporting website with additional material (2012),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ke Tao
    • 1
  • Fabian Abel
    • 1
  • Claudia Hauff
    • 1
  • Geert-Jan Houben
    • 1
  1. 1.Web Information SystemsDelft University of TechnologyThe Netherlands

Personalised recommendations