From Generic to Specific Musculoskeletal Simulations Using an Ontology-Based Modeling Pipeline

  • A. Dicko
  • B. Gilles
  • F. Faure
  • O. Palombi
Part of the Studies in Computational Intelligence book series (SCI, volume 441)


We present a novel pipeline for the construction of biomechanical simulations by combining generic anatomical knowledge with specific data. Based on functional descriptors supplied by the user, the list of the involved anatomical entities (currently bones and muscles) is generated using formal knowledge stored in ontologies, as well as a physical model based on reference geometry and mechanical parameters. This simulation-ready model can then be registered to subject-specific geometry to perform customized simulations.

The user can provide additional specific geometry, such as a simulation mesh, to assemble with the reference geometry. Subject-specific information can also be used to individualize each functional model. The model can then be visualized and animated.

This pipeline dramatically eases the creation of biomechanical models. We detail an example of a musculoskeletal simulation of knee flexion and hip flexion and abduction, based on rigid bones and the Hill muscle model, with subject-specific 3D meshes non-rigidly attached to the simulated bones.


Reference Model Muscle Model Dual Quaternion Series Elastic Element Reference Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACS+09]
    Assassi, L., Charbonnier, C., Schmid, J., Volino, P., Magnenat-Thalmann, N.: From mri to anatomical simulation of the hip joint. Comput. Animat. Virtual Worlds 20(1), 53–66 (2009)CrossRefGoogle Scholar
  2. [AWLD10]
    Arnold, E.M., Ward, S.R., Lieber, R.L., Delp, S.L.: A model of the lower limb for analysis of human movement. Annals of Biomedical Engineering 38(2), 269–279 (2010)CrossRefGoogle Scholar
  3. [BAG99]
    Pandy, M.G., Garner, B.A.: The obstacle-set method for representing muscle paths in musculoskeletal model 3, 1–30 (February 1999)Google Scholar
  4. [BD05]
    Blemker, S.S., Delp, S.L.: Three-dimensional representation of complex muscle architectures and geometries. Annals of Biomedical Engineering 33(5), 661–673 (2005)CrossRefGoogle Scholar
  5. [CZ92]
    Chen, D.T., Zeltzer, D.: Pump it up: computer animation of a biomechanically based model of muscle using the finite element method. SIGGRAPH Comput. Graph. 26, 89–98 (1992)CrossRefGoogle Scholar
  6. [DLH+90]
    Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.K., Rosen, J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering 37(8), 757–767 (1990)CrossRefGoogle Scholar
  7. [DMT07]
    Dao, T.T., Marin, F., Ho Ba Tho, M.C.: Ontology of the musculo-skeletal system of the lower limbs. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, pp. 386–389 (August 2007)Google Scholar
  8. [FDD+12]
    Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B., Marchesseau, S., Talbot, H., Courtecuisse, H., Bousquet, G., Peterlik, I., Cotin, S.: SOFA: A Multi-Model Framework for Interactive Physical Simulation. In: Payan, Y. (ed.) Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Springer (2012),
  9. [GGRT+07]
    Gutierrez, M., Garcia-Rojas, A., Thalmann, D., Vexo, F., Moccozet, L., Magnenat-Thalmann, N., Mortara, M., Spagnuolo, M.: An ontology of virtual humans: Incorporating semantics into human shapes. Vis. Comput. 23(3), 207–218 (2007)CrossRefGoogle Scholar
  10. [GRP10]
    Gilles, B., Reveret, L., Pai, D.: Creating and animating subject-specific anatomical models. Computer Graphics Forum (June 2010),
  11. [HG24]
    Hill, A., Gasser, H.: The dynamics of mucular contraction. Proceedings of Royal Society of London, 398–437 (1924)Google Scholar
  12. [Hil38]
    Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B, Biological Sciences 126(843), 136–195 (1938)Google Scholar
  13. [KCvO07]
    Kavan, L., Collins, S., Žára, J., O’Sullivan, C.: Skinning with dual quaternions. In: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, I3D 2007, pp. 39–46. ACM (2007)Google Scholar
  14. [KHYS02]
    Kahler, K., Haber, J., Yamauchi, H., Seidel, H.P.: Head shop: Generating animated head models with anatomical structure. In: ACM Symposium on Computer Animation, pp. 55–64 (2002)Google Scholar
  15. [Lee10]
    Lee, D.: A survey of modeling and simulation of skeletal muscle. ACM Transactions on Graphics 28(4) (January 2010)Google Scholar
  16. [LST09]
    Lee, S.H., Sifakis, E., Terzopoulos, D.: Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 99:1–99:17 (2009)Google Scholar
  17. [MTLT88]
    Magnenat-Thalmann, N., Laperrière, R., Thalmann, D.: Joint-dependent local deformations for hand animation and object grasping. In: Proceedings on Graphics Interface 1988, pp. 26–33. Canadian Information Processing Society, Toronto (1988)Google Scholar
  18. [NTH01]
    Ng-Thow-Hing, V.: Anatomically-Based Models for Physical and Geometrical Reconstruction of Humans and Other Animals. PhD thesis (2001)Google Scholar
  19. [RM03]
    Rosse, C., Mejino, J.L.V.: A reference ontology for biomedical informatics: the foundational model of anatomy. J. of Biomedical Informatics 36, 500 (2003)CrossRefGoogle Scholar
  20. [Sch93]
    Schutte, L.M.: Using musculoskeletal models to explore strategies for improving performance in electrical stimulation-induced leg cycle ergometry. PhD thesis, Stanford University (1993)Google Scholar
  21. [SKMT10]
    Schmid, J., Kim, J., Magnenat-Thalmann, N.: Coupled Registration-Segmentation: Application to Femur Analysis with Intra-subject Multiple Levels of Detail MRI Data. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 562–569. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. [SKP08]
    Sueda, S., Kaufman, A., Pai, D.K.: Musculotendon simulation for hand animation. ACM Transactions on Graphics 27(3), 83:1–83:8 (2008)CrossRefGoogle Scholar
  23. [SLDT07]
    Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Delp, S.L., Anderson, F.C., Thelen, D.G.: Opensim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering 54(11), 1940–1950 (2007)CrossRefGoogle Scholar
  24. [SLPF11]
    Stavness, I., Lloyd, J.E., Payan, Y., Fels, S.: Coupled hard-soft tissue simulation with contact and constraints applied to jaw-tongue-hyoid dynamics. International Journal for Numerical Methods in Biomedical Engineering 27(3), 367–390 (2011)zbMATHCrossRefGoogle Scholar
  25. [SNTH03]
    Shao, W., Ng-Thow-Hing, V.: A generic joint component framework for realistic articulation in human characters. In: ACM Symposium on Interactive 3-D Graphics, pp. 11–18 (2003)Google Scholar
  26. [TEB+05]
    Teran, J., Eftychios, S., Blemker, S.S., Ng-Thow-Hing, V., Lau, C., Fedkiw, R.: Creating and simulating skeletal muscle from the visible human data set. IEEE Transactions on Visualization and Computer Graphics 11, 317–328 (2005)CrossRefGoogle Scholar
  27. [The03]
    Thelen, D.G.: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. ASME 125(1), 70–77 (2003)Google Scholar
  28. [Zaj89]
    Zajac, F.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering 17(17), 59–411 (1989)Google Scholar
  29. [ZF03]
    Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vision Comput. 21(11), 977–1000 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Dicko
    • 1
    • 3
  • B. Gilles
    • 2
  • F. Faure
    • 1
  • O. Palombi
    • 1
    • 3
  1. 1.LJK (CNRS-UJF-INPG-UPMF), INRIAGrenobleFrance
  2. 2.LIRMM (CNRS-UM2), INRIAMontpellierFrance
  3. 3.LADAFGrenobleFrance

Personalised recommendations