3Gmap L-Systems Grammar Application to the Modeling of Flowering Plants

  • Olga PetrenkoEmail author
  • Mateu Sbert
  • Olivier Terraz
  • Djamchid Ghazanfarpour
Part of the Studies in Computational Intelligence book series (SCI, volume 441)


Flowering plants have an enormous variety of shapes both within and between individuals, providing a vast area of objectives which the image synthesis must challenge. The structure of a flower has such properties as self-similarity, symmetry, branching arrangement, which make a modeling process quite tedious. We propose to apply mathematical methods to determine botanical natural laws, using 3Gmap L-systems. Describing the structure of a flowering plant with a grammar we are able to obtain an unlimited number of its geometrical interpretations. Our approach combines L-systems grammar writing with interactive control of parameter settings. The L-systems grammars are used for describing the entire model, with stems,stamens, petals, leaves, etc., by simply operating with 3Gmap volumes. The presented contributions will make the task of a user more obvious and intuitive enabling her/him to create more accurate models. 3Gmap L-systems grammars have a nested structure, enabling to use a huge amount of grammars in a more obvious way. Moreover the way the model is built allows us to take into account its internal structure. As the flower tissue is non-homogeneous, the possibility of obtaining its internal composition could be quite useful for rendering, allowing for instance to render more accurate subsurface scattering.


Computer Graphic Flowering Plant Nest Structure Plant Structure Lateral Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anastacio, F., Prusinkiewicz, P., Sousa, M.C.: Sketch-based parameterization of l-systems using illustration-inspired construction lines. University of Calgary, Canada (2008)Google Scholar
  2. 2.
    Brisson, E.: Representing geometric structures in d dimensions: Topology and order. In: 5th ACM Symposium on Computational Geometry, pp. 218–227 (1989)Google Scholar
  3. 3.
    Deussen, O., Lintermann, B.: Interactive modeling of plants. IEEE Computer Graphics and Applications (1999)Google Scholar
  4. 4.
    Dobkin, D., Laszlo, M.: Primitives for the manipulation of three-dimensional subdivisions. In: 3rd ACM Symosium on Computational Geometry (1987)Google Scholar
  5. 5.
    Federl, P., Prusinkiewicz, P.: Virtual laboratory. An interactive software environment for compuer graphics (1999)Google Scholar
  6. 6.
    Fowler, D., Prusinkiewicz, P., Battjes, J.: A collision-based model of spiral phyllotaxis. In: Proceedings of SIGGRAPH: Computer Graphics, pp. 361–368 (1992)Google Scholar
  7. 7.
    Frijters, D., Lindenmayer, A.: Art and science for life: Designing and growing virtual plants with l-systems, pp. 24–52. Springer (1974)Google Scholar
  8. 8.
    Frijters, D., Lindenmayer, A.: Developmental descriptions of branching patterns with paracladial relationships. In: Automata, Languages and Development (1976)Google Scholar
  9. 9.
    Fuhrer, M., Jensen, H., Prusinkiewicz, P.: Modeling hairy plants. In: 12th Pacific Conference on Computer Graphics and Applications, pp. 217–225 (2004)Google Scholar
  10. 10.
    Ijiri, T., Owada, S., Igarashi, T.: Floral diagrams and inflorescences: Interactive flower modeling using botanical structural constraints. ACM Trans. on Graph. (2005)Google Scholar
  11. 11.
    Ijiri, T., Owada, S., Igarashi, T.: Seamless integration of initial sketching and subsequent detail editing in flower modeling. Computer Graphics Forum (2006)Google Scholar
  12. 12.
    Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. Int. J. Comput. Geom. Appl. (1994)Google Scholar
  13. 13.
    McCormack, J.: Interactive evolution of l-system grammars for computer graphics modeling, Clayton, Australia (1993)Google Scholar
  14. 14.
    Onishi, K., Murakami, N., Kitamura, Y., Kishino, F.: Modeling of Trees with Interactive L-System and 3D Gestures. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds.) BioADIT 2006. LNCS, vol. 3853, pp. 222–235. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Peiyu, Q., Chuanbo, C., Zehua, L.: Simulation model of flower using the interaction of l-systems with bezier surfaces. Computer Engineering and Application (16), 6–8 (2006)Google Scholar
  16. 16.
    Perttunen, J., Sievanen, R., Nikinmaa, E., Salminen, H., Saarenmaa, H., Vakeva, J.: Lignum: A tree model based on simple structural units. Annals of Botany, 87–98 (1996)Google Scholar
  17. 17.
    Peyrat, A., Terraz, O., Merillou, S., Gali, E.: Generating vast varieties of realistic leaves with parametric 2gmap l-systems. Springer (2008)Google Scholar
  18. 18.
    Power, J.L., Bernheim Brush, A.J., Prusinkiewicz, P., Salesin, D.H.: Interactive arrangement of botanical l-system models. University of Washington, University of Calgary (1999)Google Scholar
  19. 19.
    Prusinkiewicz, P.: Art and science for life: Designing and growing virtual plants with l-systems. Acta Horticulturae, 15–28 (2004)Google Scholar
  20. 20.
    Prusinkiewicz, P.: Modeling plant growth and development. Current Opinion in Plant Biology, 79–83 (2004)Google Scholar
  21. 21.
    Prusinkiewicz, P., Hammel, M.: The artificial life of plants. Artificial Life for Graphics, Animation, and Virtual Reality (1995)Google Scholar
  22. 22.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer (1990)Google Scholar
  23. 23.
    Reffye, P., Fourcaud, T., Blaise, F., Barthelemy, D., Houllier, F.: A functional model of tree growth and tree architecture. Silva Fennica (1997)Google Scholar
  24. 24.
    Terraz, O., Guimberteau, G., Merillou, S., Plemenos, D., Ghazanfarpour, D.: 3gmap l-systems. An application to the modeling of wood. Springer (2008)Google Scholar
  25. 25.
    Prusinkiewicz, P., Hammel, M., Hanan, J., Mech, R.: L-systems: from the theory to visual models of plants. In: Michalewicz, M.T. (ed.) Proceedings of the 2nd CSIRO Symposium on Computational Challanges in Life Sciences. CSIRO Publishing (1996)Google Scholar
  26. 26.
    Prusinkiewicz, P., Runions, A.: Computational models of plant development and form. New Phytologist 193(3), 549–569 (2012)CrossRefGoogle Scholar
  27. 27.
    Terraz, O., Petrenko, O., Sbert, M., Ghazanfarpour, D.: Interactive modeling of flowers with 3Gmap L-Systems. In: 21st International Conference on Computer Graphics and Vision, GraphiCon 2011 (2011)Google Scholar
  28. 28.
    Coen, E.S., Meyerowitz, E.M.: The war of the whorls: genetic interactions controlling flower development. Nature 353, 31–37 (1991)CrossRefGoogle Scholar
  29. 29.
    Power, J.L., Bernheim Brush, A.J., Prusinkiewicz, P., Salesin, D.H.: Interactive Arrangement of Botanical L-System Models. University of Washington, University of Calgary (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Olga Petrenko
    • 1
    Email author
  • Mateu Sbert
    • 1
  • Olivier Terraz
    • 2
  • Djamchid Ghazanfarpour
    • 2
  1. 1.University of GironaGironaSpain
  2. 2.University of LimogesLimogesFrance

Personalised recommendations