Ontology-Based Knowledge Elicitation: An Architecture

  • Marcello Montedoro
  • Giorgio Orsi
  • Licia Sbattella
  • Roberto Tedesco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7200)


This chapter overviews the process of collection and automatic analysis of data and documents both inside and outside the Networked Enterprise. We will address the following research problems: discovery of the useful information sources, in terms of the enterprise documentation, of structured and unstructured data provided by existing information systems, of web-available knowledge, of event flow within the business processes; extraction of synthetic knowledge from these information sources, possibly in terms of a common, semantic data model; automatic interpretation and integration of the acquired information; analysis and dissemination of such knowledge to all decisional levels, appropriately adapting it to the user’s function and context.


Domain Ontology Extraction Module Knowledge Extraction Lexical Database Network Enterprise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. ACM SIGMOD Record 22(2), 207–216 (1993)CrossRefGoogle Scholar
  2. 2.
    Atserias, J., Casas, B., Comelles, E., González, M., Padró, L., Padró, M.: Freeling 1.3: Syntactic and semantic services in an open-source NLP library. In: Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC 2006), Genoa, Italy. ELRA (May 2006)Google Scholar
  3. 3.
    Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)Google Scholar
  4. 4.
    Coman, I.D., Sillitti, A., Succi, G.: A case-study on using an automated in-process software engineering measurement and analysis system in an industrial environment. In: ICSE 2009: Proceedings of the 31st International Conference on Software Engineering, pp. 89–99. IEEE Computer Society, Washington, DC (2009)Google Scholar
  5. 5.
    de Marneffe, M.C., Manning, C.D.: Stanford typed dependencies manual. The Stanford Natural Language Processing Group, Stanford University, Stanford, California (2008)Google Scholar
  6. 6.
    Fellbaum, C. (ed.): WordNet: An Elettronic Lexical Database. MIT Press (1998)Google Scholar
  7. 7.
    Golfarelli, M., Rizzi, S.: Data Warehouse Design: Modern Principles and Methodologies. McGraw-Hill (2009)Google Scholar
  8. 8.
    Hamilton, J.: Time series analysis. Princeton Univ. Press (1994)Google Scholar
  9. 9.
    Hartigan, J.: Clustering algorithms. Wiley, New York (1975)MATHGoogle Scholar
  10. 10.
    Hawkins, D.: Identification of outliers. Chapman & Hall (1980)Google Scholar
  11. 11.
    Janes, A., Scotto, M., Sillitti, A., Succi, G.: A perspective on non invasive software management. In: Proceedings of IMTC 2006 – Instrumentation and Measurement Technology Conference, Sorrento, Italy (April 2006)Google Scholar
  12. 12.
    Kashyap, V., Bussler, C., Moran, M.: Ontology Authoring and Management. In: Data-Centric Systems and Applications, ch. 6. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Kimball, R.: The data warehouse toolkit. Wiley-India (2006)Google Scholar
  14. 14.
    Klein, D., Manning, C.D.: Fast exact inference with a factored model for natural language parsing. In: Advances in Neural Information Processing Systems, vol. 15. MIT Press (2003)Google Scholar
  15. 15.
    Long Qiu, M.-Y.K., Chua, T.-S.: A public reference implementation of the RAP anaphora resolution algorithm. In: Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC 2004), Lisbon, Portugal, vol. 1, pp. 291–294 (May 2004)Google Scholar
  16. 16.
    Martin, J., Finkelstein, C.: Information Engineering. Savant (1986)Google Scholar
  17. 17.
    Mehmed, K.: Data Mining: Concepts, Models, Methods And Algorithms. John Wiley & Sons (2003)Google Scholar
  18. 18.
    Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Collecting, integrating and analyzing software metrics and personal software process data. In: EUROMICRO 2003: Proceedings of the 29th Conference on EUROMICRO, p. 336. IEEE Computer Society, Washington, DC (2003)Google Scholar
  19. 19.
    Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of HLT-NAACL, Edmonton, Canada (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marcello Montedoro
    • 3
  • Giorgio Orsi
    • 4
    • 1
  • Licia Sbattella
    • 1
  • Roberto Tedesco
    • 2
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly
  2. 2.MCPTPolitecnico di MilanoMilanoItaly
  3. 3.IBM Italia S.p.A.SegrateItaly
  4. 4.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations