Physical Chemistry: Extending the Boundaries

Chapter
Part of the Physical Chemistry in Action book series (PCIA)

Abstract

This chapter is conceived as a brief exposition of the content of the previous nine chapters, a commentary on them and added material, with the intent to enlarge reflection on the general theme, Physical Chemistry in Action. It can be considered as a guide to the book and, in its attempt to be syncretic, perhaps as a guide to the perplexed, confronted with the separate domains of physical chemistry, astrochemistry and astrobiology.

Keywords

Solar System Molecular Cloud Transition State Theory Planetary Atmosphere Habitable Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shiltsev V (2012) Mikhail Lomonosov and the dawn of Russian science. Phys Today 64:40–46Google Scholar
  2. 2.
    Perrin J (1903) Traité de Chimie Physique I: Les Principes. Gauthier-Villars, ParisGoogle Scholar
  3. 3.
    Hinshelwood C (1951) The structure of physical chemistry. Clarendon, OxfordGoogle Scholar
  4. 4.
    Bartels H-G, Huebener R (2007) Walther Nernst: pioneer of physics and chemistry. World Scientific, SingaporeGoogle Scholar
  5. 5.
    Wilcek F (1999) The persistence of ether. Phys Today 52:11–13Google Scholar
  6. 6.
    Kragh H (2012) Walther Nernst: grandfather of dark energy. Astron Geophys 53:1.24–1.26Google Scholar
  7. 7.
    Shakespeare W (2002) Sonnets and poems. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Layzer D (1993) Chemistry and cosmology. J Phys Chem 97:2395–2399Google Scholar
  9. 9.
    Canuto V (1978) On the origin of Hawking mini black-holes and the cold early universe. Mon Not R Astron Soc 184:721–725Google Scholar
  10. 10.
    Aguirre AN (1999) Cold big bang nucleogenesis. Astrophys J 521:17–29; (2000) The cosmic background radiation in a cold big bang. Astrophys J 533:1–18Google Scholar
  11. 11.
    Khoury J, Ovrut BA, Steinhardt PJ, Turok N (2001) Ekpyrotic universe: colliding branes and the origin of the hot big bang. Phys Rev D 64:123522–123523Google Scholar
  12. 12.
    Martin J, Peter P (2004) On the “causality argument” in bouncing cosmologies. Phys Rev Lett 92:061301–061304Google Scholar
  13. 13.
    Sagan C, Chyba C (1997) The faint Sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276:1217–1221Google Scholar
  14. 14.
    Ribas I, Guinan EF, Güdel M, Audard M (2005) Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å). Astrophys J 622:680–694Google Scholar
  15. 15.
    O’Malley-James JT, Raven JA, Cockell CS, Greaves JS (2012) Life and light: exotic photosynthesis in binary and multiple-star systems. Astrobiology 12:115–124Google Scholar
  16. 16.
    Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132Google Scholar
  17. 17.
    Mulkidjanian AY, Galperin MY (2007) Physicochemical and evolutionary constraints for the formation and selection of first biopolymers: towards the concensus paradigm of the abiogenic origin of life. Chem Divers 4:2003–2015Google Scholar
  18. 18.
    Luminet J-P (2011) Black holes. Cambridge Univesity Press, CambridgeGoogle Scholar
  19. 19.
    Fumagalli M, O’Meara JM, Prochaska JX (2011) Detection of pristine gas two billion years after the big bang. Science 334:1245–1249Google Scholar
  20. 20.
    Leach S (2012) Why COBE and CN spectroscopy cosmic background radiation temperature measurements differ, and a remedy. Mon Not R Astron Soc 421:1325–1330Google Scholar
  21. 21.
    Indriolo N, McCall BJ (2012) Investigating the cosmic-ray ionization rate in the galactic diffuse interstellar medium through observation of H3+. Astrophys J 745:91-1-17Google Scholar
  22. 22.
    Snow TP, Witt AN (1996) Interstellar depletions updated: where all the atoms went. Astrophys J Lett 468:L65–L68Google Scholar
  23. 23.
    Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247Google Scholar
  24. 24.
    Lodders K (2010) Solar system abundances of the elements. In: Goswami A, Reddy BE (eds) Principles and perspectives in cosmochemistry, Astrophysics and space science proceedings. Springer, New York, pp 379–417Google Scholar
  25. 25.
    Ney EP, Hatfield BF (1978) The isothermal dust condensation of Nova Vulpeculae 1976. Astrophys J Lett 219:L111–L115Google Scholar
  26. 26.
    Duley WW (1980) Redox reactions and the optical properties of interstellar grains. Astrophys J 240:950–955Google Scholar
  27. 27.
    Field D (2000) H2 formation in space: a negative ion route ? Astron Astrophys 362:774–779Google Scholar
  28. 28.
    Caruana DJ, Holt KB (2010) Astroelectrochemistry: the role of redox reactions in cosmic dust chemistry. Phys Chem Chem Phys 12:3072–3079Google Scholar
  29. 29.
    Hoyle F, Wickramasinghe NC (1979) On the nature of interstellar grains. Astrophys Space Sci 66:77–90Google Scholar
  30. 30.
    Hoyle F, Wickramasinghe NC, Al-Mufti S (1985) The ultraviolet absorbance of presumably interstellar bacteria and related matters. Astrophys Space Sci 111:65–78Google Scholar
  31. 31.
    Léger A, d’Hendecourt L, Boccara N (eds) (1987) Polycyclic aromatic hydrocarbons and astrophysics. Reidel, DordrechtGoogle Scholar
  32. 32.
    Kwok S, Zhang Y (2011) Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified emission features. Nature 479:80–83Google Scholar
  33. 33.
    Cami J, Bernard-Salas J, Peeters E, Malek SE (2010) Detection of C60 and C70 in a young planetary nebula. Science 329:1180–1182Google Scholar
  34. 34.
    Zhang Y, Kwok S (2011) Detection of C60 in the protoplanetary nebula IRAS 01005+7910. Astrophys J 730:126-1-5Google Scholar
  35. 35.
    Herbig GH (2000) The search for interstellar C60. Astrophys J 542:334–343Google Scholar
  36. 36.
    Leach S, Vervloet M, Desprès A, Bréhéret E, Hare JP, Dennis TJ, Kroto HW, Taylor R, Walton DRM (1992) Electronic spectra and transitions of the fullerene C60. Chem Phys 160:451–466Google Scholar
  37. 37.
    Sassara A, Zerza G, Chergui M, Leach S (2001) Absorption wavelengths and bandwidths for interstellar searches of C60 in the 2400–4100 Å region. Astrophys J Suppl 135:263–273Google Scholar
  38. 38.
    Goeres A, Sedlmayr E (1992) The envelopes of R Coronae Borealis stars I. A physical model of the decline events due to dust formation. Astron Astrophys 265:216–236Google Scholar
  39. 39.
    García-Hernández DA, Iglesias-Groth S, Acosta-Pulido A, Manchado A, García-Lario P, Stanghellini L, Villaver E, Shaw RA, Cataldo F (2011) The formation of fullerenes: clues from new C60, C70, and (possible) planar C24 detections in the Magellanic cloud planetary nebulae. Astrophys J Lett 737:L30-1-7Google Scholar
  40. 40.
    Duley WW, Hu A (2012) Fullerenes and proto-fullerenes in interstellar carbon dust. Astrophys J Lett 745:L11-1-4Google Scholar
  41. 41.
    Evans A, van Loon JT, Woodward CE, Gehrz RD, Clayton GC, Helton LA, Rushton MT, Eyres SPS, Krautter J, Starrfield S, Wagner RM (2012) Solid-phase C60 in the peculiar binary XX Oph? Mon Not R Astron Soc 421:L92–L96Google Scholar
  42. 42.
    Tong X, Winney AH, Willitsch S (2010) Sympathetic cooling of molecular ions in selected rotational and vibrational states produced by threshold photoionization. Phys Rev Lett 105:143001-1-4Google Scholar
  43. 43.
    Hall FJ, Aymar M, Bouloufa-Maafa N, Dulieu O, Wilitsch S (2011) Light-assisted ion-neutral reactive processes in the cold regime: radiative molecule formation versus charge exchange. Phys Rev Lett 107:243202-1-5Google Scholar
  44. 44.
    Goulielmakis E, Loh Z-H, Wirth A, Santra R, Rohringer N et al (2010) Real-time observation of valence electron motion. Nature 466:739–743Google Scholar
  45. 45.
    Grubb M, Warter ML, Xiao H, Maeda S, Morokuma K, North SW (2012) No straight path: roaming in both ground- and excited-state photolytic channels of NO3 — > NO + O2. Science 335:1075–1078Google Scholar
  46. 46.
    Bowman JM, Schneider BC (2011) Roaming radicals. Annu Rev Phys Chem 62:531–553Google Scholar
  47. 47.
    NIST Chemistry Webbook (June 2005) National Institute of Standards and Technology Reference Database. Available from http://webbook.nist.gov (current 2010)
  48. 48.
    Lias SG, Bartmess JE, Libman JF, Holmes JL, Levin RD, Mallard WG (1988) Gas-phase ion and neutral thermochemistry. J Phys Chem Ref Data 17(supplNo.1)Google Scholar
  49. 49.
    Cohen N, Benson SW (1983) Estimation of heats of formation of organic compounds by additivity methods. Chem Rev 93:2419–2438Google Scholar
  50. 50.
    Lemoult P (1907) Recherches théoriques et expérimentales sur les chaleurs de combustion et de formation des composés organiques. 1. Amines primaires, secondaires et tertiaires. Ann Chim Phys 8e série:395–432Google Scholar
  51. 51.
    Lemoult P (1908) Recherches théoriques et expérimentales sur les chaleurs de combustion et de formation des composés organiques. 2. Composés hydrazoiques. Ann Chim Phys 8e série:562–574Google Scholar
  52. 52.
    Lemoult P (1905) Relations générales entre la chaleur de combustion des composés organiques et leur formule de constitution. Calcul des chaleurs de combustion. Ann Chim Phys 8e série: 5–70Google Scholar
  53. 53.
    Cox JD, Pilcher G (1970) Thermochemistry of organic and organometallic compounds. Academic, New YorkGoogle Scholar
  54. 54.
    Benson SW, Buss JH (1958) Additivity rules for the estimation of Molecular properties. Thermodynamic properties. J Chem Phys 29:546–573Google Scholar
  55. 55.
    Benson SW (1976) Thermochemical kinetics, 2nd edn. Wiley, New YorkGoogle Scholar
  56. 56.
    Pedley JB, Naylor RD, Kirby SP (1986) Thermochemical data of organic compounds, 2nd edn. Chapman and Hall, LondonGoogle Scholar
  57. 57.
    van Speybroek V, Gani R, Meier RJ (2010) The calculation of thermodynamic properties of molecules. Chem Soc Rev 39:1764–1779Google Scholar
  58. 58.
    Holmes JL, Lossing FP (1989) Bond strengths in even-electron ions and the proton affinities of free radicals. Int J Mass Spectrom Ion Processes 92:111–122Google Scholar
  59. 59.
    Meot-Ner Mautner M, Sieck LW (1991) Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range. J Am Chem Soc 113:4448–4460Google Scholar
  60. 60.
    Czakó G, Mátyus E, Simmonnett AG, Császár G, Schaefer HF III, Allen WD (2008) Anchoring the absolute proton affinity scale. J Chem Theory Comput 4:1220–1229Google Scholar
  61. 61.
    Lias SG, Bartmess JE (2005) Gas-phase ion thermochemistry. NIST Chemistry Webbook, http://webbook.nist.gov
  62. 62.
    Traeger JC, McLoughlin RG (1981) Absolute heats of formation for gas-phase cations. J Am Chem Soc 103:3637–3652Google Scholar
  63. 63.
    Franklin JL (1953) Calculation of the heats of formation of gaseous free radicals and ions. J Chem Phys 21:2029–2034Google Scholar
  64. 64.
    Holmes JL, Fingas M, Lossing FP (1981) Towards a general scheme for estimating the heats of formation of organic ions in the gas phase. Part 1. Odd-electron ions. Can J Chem 59:80–93Google Scholar
  65. 65.
    Vasyunin AI, Semenov D, Henning Th, Wakelam V, Herbst E, Sobolev AM (2008) Chemistry in protoplanetary disks: a sensitivity analysis. Astrophys J 672:629–641Google Scholar
  66. 66.
    Patra SM, Mishra RK, Mishra BK (1997) Graph-theoretic study of certain interstellar reactions. Int J Quantum Chem 62:495–508Google Scholar
  67. 67.
    Solé RV, Munteanu A (2004) The large-scale organization of chemical networks in astrophysics. Europhys Lett 68:170–176Google Scholar
  68. 68.
    Jolley C, Douglas T (2012) Topological signatures: large-scale structure of chemical networks from biology and astrochemistry. Astrobiology 12:29–39Google Scholar
  69. 69.
    Wayne RP (2000) Chemistry of atmospheres. An introduction to the chemistry of the atmospheres of earth, the planets, and their satellites, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  70. 70.
    Taylor FW (2010) Planetary atmospheres. Oxford University Press, OxfordGoogle Scholar
  71. 71.
    Pierrehumbert RT (2010) Principles of planetary climate. Cambridge University Press, CambridgeGoogle Scholar
  72. 72.
    Lellouch E (2011) The composition of planetary atmospheres: an historical perspective. In: Beaulieu J-P, Dieters S, Tinetti G (eds) Molecules in the atmospheres of extrasolar planets, ASP conference series, Paris, vol 450, pp 3–18Google Scholar
  73. 73.
    Perryman MAC (2000) Extra-solar planets. Rep Prog Phys 63:1209–1272Google Scholar
  74. 74.
    Sozzetti MT, Lattanzi MG, Boss AP (eds) (2011) The astrophysics of planetary systems: formation, structure, and dynamical evolution. Proceedings IAU symposium, 276 TorinoGoogle Scholar
  75. 75.
    Schneider J, Dedieu C, Le Sidaner P, Savalle R, Zolotukhin I (2011) Defining and cataloging exoplanets: the exoplanet.eu data base. Astron Astrophys 532:A79-1-13Google Scholar
  76. 76.
    Plavalova E (2012) Taxonomy of the extrasolar planet. Astrobiology 12:361–369Google Scholar
  77. 77.
    Seager S (2010) Exoplanet atmospheres: a theoretical outlook. In: Sozzetti MT, Lattanzi MG, Boss AP (eds) The astrophysics of planetary systems: formation, structure, and dynamical evolution. Proceedings IAU symposium. Torino, 276, pp 198–207Google Scholar
  78. 78.
    Seager S, Deming D (2010) Exoplanet atmospheres. Annu Rev Astron Astrophys 48:631–672Google Scholar
  79. 79.
    Burrows A, Budaj J, Hubeny I (2008) Theoretical spectra and light curves of close-in extrasolar giant planets and comparison with data. Astrophys J 678:1436–1457Google Scholar
  80. 80.
    Liang M-C, Seager S, Parkinson C, Lee AY-L, Yung YL (2004) On the insignificance of photochemical hydrocarbon aerosols in the atmospheres of close-in extrasolar giant planets. Astrophys J Lett 605:L61–L64Google Scholar
  81. 81.
    Line MR, Vasisht G, Chen P, Angerhausen D, Yung YL (2011) Thermochemical and photochemical kinetics in cooler hydrogen-dominated extrasolar planets: a methane-poor GJ4336b? Astrophys J 738:32-1-14Google Scholar
  82. 82.
    Miller-Ricci Kempton E, Zahnle K, Fortney JJ (2012) The atmospheric chemistry of GJ 1214b: photochemistry and clouds. Astrophys J 745:3-1-13Google Scholar
  83. 83.
    Marley MS, Fortney J, Seager S, Barman T (2007) Atmospheres of extrasolar giant planets. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 733–747Google Scholar
  84. 84.
    Seager S, Schrenk M, Bains W (2012) An astrophysical view of earth-based metabolic biosignature gases. Astrobiology 12:61–82Google Scholar
  85. 85.
    Fox JL, Galand MI, Johnson RE (2008) Energy deposition in planetary atmospheres by charged particles and solar photons. Space Sci Rev 139:3–62Google Scholar
  86. 86.
    Yelle R, Lammer H, Ip W-H (2008) Aeronomy of extra-solar giant planets. Space Sci Rev 139:437–451Google Scholar
  87. 87.
    Lunine JI (2005) Astrobiology: a multidisciplinary approach. Addison Wesley, San FranciscoGoogle Scholar
  88. 88.
    Trail D, Mojzsis SJ, Harrison TM, Schmitt AK, Watson EB, Young ED (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem Geophys Geosystems 8:Q06014-1-22Google Scholar
  89. 89.
    Hirschmann M, Kohlstedt D (2012) Water in Earth’s mantle. Phys Today 65:40–45Google Scholar
  90. 90.
    Léger A, Selsis F, Sotin C, Guillot T, Despois D et al (2004) A new family of planets? “Ocean Planets”. Icarus 169:499–504Google Scholar
  91. 91.
    Marcy G (2009) Water world larger than Earth. Nature 462:853–854Google Scholar
  92. 92.
    de Grotthuss CJT (1806) Sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique. Ann Chim (Paris) 58:54–74Google Scholar
  93. 93.
    Cuikerman S (2006) Et tu, Grotthuss! and other unfinished stories. Biochim Biophys Acta 1757:876–885Google Scholar
  94. 94.
    Fayer MD (2012) Dynamics of water interacting with interfaces, molecules, and ions. Acc Chem Res 45:3–14Google Scholar
  95. 95.
    Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663Google Scholar
  96. 96.
    Benner S, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe? Curr Opin Chem Biol 8:672–689Google Scholar
  97. 97.
    Cleland CE, Chyba CF (2002) Defining ‘life’. Origins Life Evol B 32:387–393Google Scholar
  98. 98.
    Ruiz-Mirazo K, Pereto J, Moreno A (2004) A universal definition of life: autonomy and open-ended evolution. Origins Life Evol B 34:323–346Google Scholar
  99. 99.
    Deamer D (2010) Special collection of essays: what is life? Astrobiology 10:1001–1002Google Scholar
  100. 100.
    Lambert JB, Gurusamy-Thangavelu SA, Ma K (2010) The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates. Science 327:984–986Google Scholar
  101. 101.
    Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance and survival. Proc Natl Acad Sci 101:4631–4636Google Scholar
  102. 102.
    Morowitz HJ (1992) Beginnings of cellular life: metabolism recapitulates biogenesis. Yale University Press, New Haven/LondonGoogle Scholar
  103. 103.
    Pross A (2003) The driving force for life’s emergence. Kinetic and thermodynamic considerations. J Theor Biol 220:393–406Google Scholar
  104. 104.
    Pross A (2004) Causation and the origin of life. Metabolism or replication first? Origins Life Evol B 34:307–321Google Scholar
  105. 105.
    Anet FAL (2004) The place of metabolism in the origin of life. Curr Opin Chem Biol 8:654–659Google Scholar
  106. 106.
    Eschenmoser A (1994) Chemistry of potentially prebiological natural products. Origins Life Evol B 24:389–423Google Scholar
  107. 107.
    Altman S, Baer MF, Bartkiewicz M, Gold H, Guerrier-Takada C, Kirsebom LA, Lumelsky N, Peck K (1989) Catalyses by the RNA subunit of RNase P - a minireview. Gene 82:63–64Google Scholar
  108. 108.
    Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27:487–496Google Scholar
  109. 109.
    Cech TR (1993) The efficiency and versatility of catalytic RNA: implications for an RNA world. Gene 135:33–36Google Scholar
  110. 110.
    Powner MW, Gerland B, Sutherland J (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242Google Scholar
  111. 111.
    Turk RM, Chumachenko NV, Yarus M (2010) Multiple translational products from a five-nucleotide ribozyme. Proc Natl Acad Sci 107:4585–4589Google Scholar
  112. 112.
    Szathmáry E (2006) The origin of replicators and reproducers. Philos Trans R Soc B 361:1761–1776Google Scholar
  113. 113.
    Eigen M (1971) Self-organization of matter and the evolution of biological molecules. Naturwissenschaften 58:465–523Google Scholar
  114. 114.
    Hancyzc MM, Szostak JW (2004) Replicating vesicles as models of primitive cell growth and division. Curr Opin Chem Biol 8:660–664Google Scholar
  115. 115.
    Stano P, Luisi PL (2010) Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem Commun 46:3639–3653Google Scholar
  116. 116.
    Čopič A, Latham CF, Horlbeck MA, D’Arcangelo JG, Miller EA (2012) ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p. Science 335:1359–1362Google Scholar
  117. 117.
    Szostak JW (2011) An optimal degree of physical and chemical heterogeneity for the origin of life. Philos Trans R Soc B 366:2894–2901Google Scholar
  118. 118.
    Zykov V, Mytilinaios E, Adams B, Lipson H (2005) Self-reproducing machines. Nature 435:163–164Google Scholar
  119. 119.
    Solé RV (2009) Evolution and self-assembly of protocells. Int J Biochem Cell Biol 41:274–284Google Scholar
  120. 120.
    Nurse P (2008) Life, logic and information. Nature 454:424–426Google Scholar
  121. 121.
    Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M et al (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336:341–344Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire d’Etude du Rayonnement et de la Matière en Astrophysique (Lerma)Observatoire de Paris-MeudonMeudonFrance

Personalised recommendations