Advertisement

A Model for Assessing the Risk of Revealing Shared Secrets in Social Networks

  • Luigi Troiano
  • Irene Díaz
  • Luis J. Rodríguez-Muñiz
Part of the Communications in Computer and Information Science book series (CCIS, volume 300)

Abstract

We introduce the problem of information which become sensitive when combined, named shared secrets, and we propose a model based on Choquet integral to assess the risk that an actor in a social network is able to combine all information available. Some examples are presented and discussed and future directions are outlined.

Keywords

Privacy social networks fuzzy measure choquet integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beach, A., Gartrell, M., Han, R.: Social-K: Real-time K-anonymity guarantees for social network applications. In: 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 600–606. IEEE (March 2010)Google Scholar
  2. 2.
    Campan, A., Truta, T.M.: Data and Structural k-Anonymity in Social Networks. In: Bonchi, F., Ferrari, E., Jiang, W., Malin, B. (eds.) PinKDD 2008. LNCS, vol. 5456, pp. 33–54. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Faigle, U., Grabisch, M.: A discrete choquet integral for ordered systems. CoRR, abs/1102.1340 (2011)Google Scholar
  4. 4.
    Jung, Y., Kim, M., Masoumzadeh, A., Joshi, J.: A survey of security issue in multi-agent systems. Artificial Intelligence Review, 1–22 (2011), doi:10.1007/s10462-011-9228-8Google Scholar
  5. 5.
    Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: Proceedings of IEEE International Conference on Data Engineering, pp. 106–115 (2007)Google Scholar
  6. 6.
    Liu, K., Das, K., Grandison, T., Kargupta, H.: Privacy-preserving data analysis on graphs and social networksGoogle Scholar
  7. 7.
    Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-anonymity. In: 22nd IEEE International Conference on Data Engineering (2006)Google Scholar
  8. 8.
    Mesiar, R.: Fuzzy measures and integrals. Fuzzy Sets and Systems 156(3), 365–370 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Transactions on Knowledge and Data Engineering 13, 1010–1027 (2001)CrossRefGoogle Scholar
  10. 10.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Simmons, G.J.: How to (Really) Share a Secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, Heidelberg (1990)Google Scholar
  12. 12.
    Sugeno, M.: Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology (1974)Google Scholar
  13. 13.
    Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5), 571–588 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Torra, V., Domingo-Ferrer, J.: Disclosure control methods and information loss for microdata, pp. 91–110. Elsevier (2001)Google Scholar
  15. 15.
    Torra, V., Narukawa, Y.: Modeling decisions - information fusion and aggregation operators. Springer (2007)Google Scholar
  16. 16.
    Wong, R.C., Li, J., Fu, A.W., Wang, K.: (α,k) Anonymity: An Enhanced k -Anonymity Model for Privacy-Preserving Data Publishing, pp. 754–759. ACM (2006)Google Scholar
  17. 17.
    Ying, X., Wu, X.: On Link Privacy in Randomizing Social Networks. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 28–39. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Ying, X., Wu, X.: On link privacy in randomizing social networks. Knowl. Inf. Syst. 28(3), 645–663 (2011)CrossRefGoogle Scholar
  19. 19.
    Zhou, B., Pei, J.: The k-anonymity and l-diversity approaches for privacy preservation in social networks against neighborhood attacks. Knowledge and Information Systems 28(1), 1–38 (2010)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luigi Troiano
    • 1
  • Irene Díaz
    • 2
  • Luis J. Rodríguez-Muñiz
    • 3
  1. 1.Dept. of EngineeringUniversity of SannioBeneventoItaly
  2. 2.Dept. of Computer ScienceUniversity of OviedoOviedoSpain
  3. 3.Dept. of Statistics and O.RUniversity of OviedoOviedoSpain

Personalised recommendations