Maximin and Maximal Solutions for Linear Programming Problems with Possibilistic Uncertainty

  • Erik Quaeghebeur
  • Nathan Huntley
  • Keivan Shariatmadar
  • Gert de Cooman
Part of the Communications in Computer and Information Science book series (CCIS, volume 299)


We consider linear programming problems with uncertain constraint coefficients described by intervals or, more generally, possibility distributions. The uncertainty is given a behavioral interpretation using coherent lower previsions from the theory of imprecise probabilities. We give a meaning to the linear programming problems by reformulating them as decision problems under such imprecise-probabilistic uncertainty. We provide expressions for and illustrations of the maximin and maximal solutions of these decision problems and present computational approaches for dealing with them.


linear program interval uncertainty vacuous lower prevision possibility distribution coherent lower prevision imprecise probabilities decision making maximinity maximality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Tal, A., Nemirovski, A.: Robust optimization – methodology and applications. Mathematical Programming 92(3), 453–480 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bertsimas, D., Tsitsiklis, J.N.: Introduction to linear optimization. Athena Scientific (1997)Google Scholar
  3. 3.
    Charnes, A., Cooper, W.W.: Chance-constrained programming. Management Science 6(1), 73–79 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dantzig, G.B.: Linear programming under uncertainty. Management Science 1(3/4), 197–206 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer (2006)Google Scholar
  6. 6.
    Jamison, K.D., Lodwick, W.A.: Fuzzy linear programming using a penalty method. Fuzzy Sets and Systems 119(1), 97–110 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Quaeghebeur, E., Shariatmadar, K., De Cooman, G.: Constrained optimization problems under uncertainty with coherent lower previsions. Fuzzy Sets and Systems (in press)Google Scholar
  8. 8.
    Sahinidis, N.V.: Optimization under uncertainty: state-of-the-art and opportunities. Computers & Chemical Engineering 28(6–7), 971–983 (2004)CrossRefGoogle Scholar
  9. 9.
    Soyster, A.L.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research 21(5), 1154–1157 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Troffaes, M.C.M.: Decision making under uncertainty using imprecise probabilities. International Journal of Approximate Reasoning 45(1), 17–29 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Walley, P.: Statistical Reasoning with Imprecise Probabilities. In: Monographs on Statistics and Applied Probability, vol. 42. Chapman & Hall, London (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Erik Quaeghebeur
    • 1
  • Nathan Huntley
    • 1
  • Keivan Shariatmadar
    • 1
  • Gert de Cooman
    • 1
  1. 1.SYSTeMS Research GroupGhent UniversityZwijnaardeBelgium

Personalised recommendations