On the Relation between Effort-Dominating and Symmetric Minitive Aggregation Operators

  • Marek Gagolewski
Part of the Communications in Computer and Information Science book series (CCIS, volume 299)

Abstract

In this paper the recently introduced class of effort- dominating impact functions is examined. It turns out that each effort-dominating aggregation operator not only has a very intuitive interpretation, but also is symmetric minitive, and therefore may be expressed as a so-called quasi-I-statistic, which generalizes the well-know OWMin operator.

These aggregation operators may be used e.g. in the Producer Assessment Problem whose most important instance is the scientometric/bibliometric issue of fair scientists’ ranking by means of the number of citations received by their papers.

Keywords

Aggregation operators impact functions arity-monotonic OWMax OWMin OMA OWA Hirsch’s h-index scientometrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dubois, D., Prade, H.: Semantics of quotient operators in fuzzy relational databases. Fuzzy Sets and Systems 78(1), 89–93 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dubois, D., Prade, H., Testemale, C.: Weighted fuzzy pattern matching. Fuzzy Sets and Systems 28, 313–331 (1988)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Gagolewski, M.: Bibliometric impact assessment with R and the CITAN package. Journal of Informetrics 5(4), 678–692 (2011)CrossRefGoogle Scholar
  4. 4.
    Gagolewski, M., Grzegorzewski, P.: A geometric approach to the construction of scientific impact indices. Scientometrics 81(3), 617–634 (2009)CrossRefGoogle Scholar
  5. 5.
    Gągolewski, M., Grzegorzewski, P.: Arity-Monotonic Extended Aggregation Operators. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. CCIS, vol. 80, pp. 693–702. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Gagolewski, M., Grzegorzewski, P.: Axiomatic characterizations of (quasi-) L-statistics and S-statistics and the Producer Assessment Problem. In: Galichet, S., Montero, J., Mauris, G. (eds.) Proc. Eusflat/LFA 2011, pp. 53–58 (2011)Google Scholar
  7. 7.
    Gagolewski, M., Grzegorzewski, P.: Possibilistic analysis of arity-monotonic aggregation operators and its relation to bibliometric impact assessment of individuals. International Journal of Approximate Reasoning 52(9), 1312–1324 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Grabisch, M., Pap, E., Marichal, J.L., Mesiar, R.: Aggregation functions, Cambridge (2009)Google Scholar
  9. 9.
    Hirsch, J.E.: An index to quantify individual’s scientific research output. Proceedings of the National Academy of Sciences 102(46), 16569–16572 (2005)CrossRefGoogle Scholar
  10. 10.
    Mesiar, R., Mesiarová-Zemánková, A.: The ordered modular averages. IEEE Transactions on Fuzzy Systems 19(1), 42–50 (2011)CrossRefGoogle Scholar
  11. 11.
    Ricci, R.G., Mesiar, R.: Multi-attribute aggregation operators. Fuzzy Sets and Systems 181(1), 1–13 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Woeginger, G.J.: An axiomatic characterization of the Hirsch-index. Mathematical Social Sciences 56(2), 224–232 (2008)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on Systems, Man, and Cybernetics 18(1), 183–190 (1988)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marek Gagolewski
    • 1
    • 2
  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  2. 2.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations