A New Approach to Principal Component Analysis for Intuitionistic Fuzzy Data Sets

  • Eulalia Szmidt
  • Janusz Kacprzyk
Part of the Communications in Computer and Information Science book series (CCIS, volume 298)

Abstract

We propose a new approach to Principal Component Analysis (PCA) for Atanassov’s intuitionistic fuzzy sets (A-IFSs). We are mainly concerned with the dimension reduction for data represented as the A-IFSs, and provide an illustrative example.

Keywords

Principal Component Analysis Correlation Matrice Correlation Component Saturday Morning Intelligent Data Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atanassov, K.: Intuitionistic Fuzzy Sets. VII ITKR Session. Sofia (Centr. Sci.-Techn. Libr. of Bulg. Acad. of Sci. 1697/1984) (1983) (in Bulgarian)Google Scholar
  2. 2.
    Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Springer (1999)Google Scholar
  3. 3.
    Bustince, H., Mohedano, V., Barrenechea, E., Pagola, M.: An algorithm for calculating the threshold of an image representing uncertainty through A-IFSs. In: IPMU 2006, pp. 2383–2390 (2006)Google Scholar
  4. 4.
    Bustince, H., Mohedano, V., Barrenechea, E., Pagola, M.: Image thresholding using intuitionistic fuzzy sets. In: Atanassov, K., Kacprzyk, J., Krawczak, M. (eds.) Issues in the Representation and Processing of Uncertain and Imprecise Information. Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets, and Related Topics. EXIT, Warsaw (2005)Google Scholar
  5. 5.
    Chiang, D.-A., Lin, N.P.: Correlation of fuzzy sets. Fuzzy Sets and Systems 102, 221–226 (1999)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Ding, C., He, X.: K-means Clustering via Principal Component Analysis. In: Proc. 21st Int. Conf. Machine Learning, Banff, Canada, pp. 21–30 (2004)Google Scholar
  7. 7.
    Fang, Y.-C., Tzeng, Y.-F., Li, S.-X.: A Taguchi PCA fuzzy-based approach for the multi-objective extended optimization of a miniature optical engine. Journal of Physics D: Applied Physics 41(17), 175–188 (2008)Google Scholar
  8. 8.
    Jackson, J.E.: A User’s Guide to Principal Components. John Wiley and Sons, New York (1991)MATHCrossRefGoogle Scholar
  9. 9.
    Jolliffe, I.T.: Principal Component Analysis. Springer (1986)Google Scholar
  10. 10.
    Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer (2002)Google Scholar
  11. 11.
    Xia, L., Zhao, C.: The application of PCA-fuzzy probability analysis on risk evaluation of construction schedule of highway. In: IEEE 2010 Int. Conf. on Logistics Systems and Intelligent Management, pp. 1230–1234 (2010)Google Scholar
  12. 12.
    Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. In: Probability and Mathematical Statistics. Academic Press (1995)Google Scholar
  13. 13.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Phil. Mag. 6(2), 559–572 (1901)Google Scholar
  14. 14.
    Rodgers, J.L., Nicewander, W.A.: Thirteen Ways to Look at the Correlation Coefficient. The American Statistician 42(1), 59–66 (1988)CrossRefGoogle Scholar
  15. 15.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)Google Scholar
  16. 16.
    Sebzalli, Y.M., Wang, X.Z.: Knowledge discovery fromprocess operational data using PCA and fuzzy clustering. Engineering Applications of Artifcial Intelligence 14, 607–616 (2001)CrossRefGoogle Scholar
  17. 17.
    Szmidt, E., Kacprzyk, J.: Remarks on some applications of intuitionistic fuzzy sets in decision making. Notes on IFS 2(3), 22–31 (1996c)MathSciNetMATHGoogle Scholar
  18. 18.
    Szmidt, E., Kacprzyk, J.: On measuring distances between intuitionistic fuzzy sets. Notes on IFS 3(4), 1–13 (1997)MathSciNetMATHGoogle Scholar
  19. 19.
    Szmidt, E., Kacprzyk, J.: Group Decision Making under Intuitionistic Fuzzy Preference Relations. In: IPMU 1998, pp. 172–178 (1998)Google Scholar
  20. 20.
    Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114(3), 505–518 (2000)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Szmidt, E., Kacprzyk, J.: On Measures on Consensus Under Intuitionistic Fuzzy Relations. In: IPMU 2000, pp. 1454–1461 (2000)Google Scholar
  22. 22.
    Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems 118(3), 467–477 (2001)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Szmidt, E., Kacprzyk, J.: Analysis of Consensus under Intuitionistic Fuzzy Preferences. In: Proc. Int. Conf. in Fuzzy Logic and Technology, pp. 79–82. De Montfort Univ. Leicester, UK (2001)Google Scholar
  24. 24.
    Szmidt, E., Kacprzyk, J.: Analysis of Agreement in a Group of Experts via Distances Between Intuitionistic Fuzzy Preferences. In: Proc. 9th Int. Conf. IPMU 2002, pp. 1859–1865 (2002a)Google Scholar
  25. 25.
    Szmidt, E., Kacprzyk, J.: An Intuitionistic Fuzzy Set Based Approach to Intelligent Data Analysis (an application to medical diagnosis). In: Abraham, A., Jain, L., Kacprzyk, J. (eds.) Recent Advances in Intelligent Paradigms and Applications, pp. 57–70. Springer (2002b)Google Scholar
  26. 26.
    Szmidt, E., Kacprzyk, J.: An Intuitionistic Fuzzy Set Based Approach to Intelligent Data Analysis (an application to medical diagnosis). In: Abraham, A., Jain, L., Kacprzyk, J. (eds.) Recent Advances in Intelligent Paradigms and Applications, pp. 57–70. Springer (2002c)Google Scholar
  27. 27.
    Szmidt, E., Kacprzyk, J.: Distances Between Intuitionistic Fuzzy Sets: Straight forward Approaches may not work. In: IEEE IS 2006, pp. 716–721 (2006)Google Scholar
  28. 28.
    Szmidt, E., Kacprzyk, J.: An Application of Intuitionistic Fuzzy Set Similarity Measures to a Multi-criteria Decision Making Problem. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 314–323. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Szmidt, E., Kacprzyk, J.: Some Problems with Entropy Measures for the Atanassov Intuitionistic Fuzzy Sets. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 291–297. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Szmidt, E., Kacprzyk, J.: A New Similarity Measure for Intuitionistic Fuzzy Sets: Straight forward Approaches may not work. In: 2007 IEEE Conf. on Fuzzy Systems, pp. 481–486 (2007a)Google Scholar
  31. 31.
    Szmidt, E., Kacprzyk, J.: A new approach to ranking alternatives expressed via intuitionistic fuzzy sets. In: Ruan, D., et al. (eds.) Computational Intelligence in Decision and Control, pp. 265–270. World Scientific (2008)Google Scholar
  32. 32.
    Szmidt, E., Kacprzyk, J.: Amount of Information and Its Reliability in the Ranking of Atanassov’s Intuitionistic Fuzzy Alternatives. In: Rakus-Andersson, E., Yager, R.R., Ichalkaranje, N., Jain, L.C. (eds.) Recent Advances in Decision Making. SCI, vol. 222, pp. 7–19. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Szmidt, E., Kacprzyk, J.: Ranking of Intuitionistic Fuzzy Alternatives in a Multi-criteria Decision Making Problem. In: Proceedings of the Conference: NAFIPS 2009, Cincinnati, USA, June 14-17. IEEE (2009) ISBN: 978-1-4244-4577-6Google Scholar
  34. 34.
    Szmidt, E., Kacprzyk, J.: Dealing with typical values via Atanassov’s intuitionistic fuzzy sets. Int. J. of General Systems 39(5), 489–506 (2010)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Szmidt, E., Kacprzyk, J.: Correlation of Intuitionistic Fuzzy Sets. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS(LNAI), vol. 6178, pp. 169–177. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  36. 36.
    Szmidt, E., Kukier, M.: Classification of Imbalanced and Overlapping Classes using Intuitionistic Fuzzy Sets. In: IEEE IS 2006, London, pp. 722–727 (2006)Google Scholar
  37. 37.
    Szmidt, E., Kukier, M.: A new approach to classification of imbalanced classes via Atanassov’s intuitionistic fuzzy sets. In: Wang, H.-F. (ed.) Intelligent Data Analysis: Developing New Methodologies Through Pattern Discovery and Recovery, pp. 65–102. Idea Group (2008)Google Scholar
  38. 38.
    Szmidt, E., Kukier, M.: Atanassov’s intuitionistic fuzzy sets in classification of imbalanced and overlapping classes. In: Chountas, P., Petrounias, I., Kacprzyk, J. (eds.) Intelligent Techniques and Tools for Novel System Architectures. SCI, vol. 109, pp. 455–471. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  39. 39.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eulalia Szmidt
    • 1
    • 2
  • Janusz Kacprzyk
    • 1
    • 2
  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  2. 2.Warsaw School of Information TechnologyWarsawPoland

Personalised recommendations