Abstract

In [7] Fredricks et al. showed that certain Iterated Function Systems (IFS) can be used to construct copulas with fractal support. Since, firstly, the same construction also works with respect to the D1-metric on the space of copulas which is much stronger than the uniform metric and, secondly, the star product of copulas is (jointly) continuous with respect to this metric the IFS approach can also be used to construct idempotent copulas with fractal support. The main result of the paper is that for each open interval I ⊆ [1,2] there exists an idempotent copula A such that the Hausdorff dimension of the support of A is contained in the interval I.

Keywords

Copula Star product Idempotence Iterated Function System Fractal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnsley, M.F.: Fractals everywhere. Academic Press, Cambridge (1993)MATHGoogle Scholar
  2. 2.
    Darsow, W.F., Nguyen, B., Olsen, E.T.: Copulas and Markov processes. Ill. J. Math. 36(4), 600–642 (1992)MathSciNetMATHGoogle Scholar
  3. 3.
    Darsow, W.F., Olsen, E.T.: Characterization of idempotent 2-copulas. Note Mat. 30(1), 147–177 (2010)Google Scholar
  4. 4.
    Durante, F., Klement, E.P., Quesada-Molina, J., Sarkoci, J.: Remarks on Two Product-like Constructions for Copulas. Kybernetika 43(2), 235–244 (2007)MathSciNetMATHGoogle Scholar
  5. 5.
    Durante, F., Sempi, C.: Copula theory: an introduction. In: Jaworski, P., Durante, F., Härdle, W., Rychlik, T. (eds.) Copula Theory and its Applications. Lecture Notes in Statistics–Proceedings, vol. 198, pp. 1–31. Springer, Berlin (2010)CrossRefGoogle Scholar
  6. 6.
    Farahat, H.K.: The semigroup of doubly-stochastic matrices. Proc. Glasgow Mat., Ass. 7, 178–183 (1966)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Fredricks, G.A., Nelsen, R.B., Rodríguez-Lallena, J.A.: Copulas with fractal supports. Insur. Math. Econ. 37, 42–48 (2005)MATHCrossRefGoogle Scholar
  8. 8.
    Kallenberg, O.: Foundations of modern probability. Springer, Heidelberg (1997)MATHGoogle Scholar
  9. 9.
    Klenke, A.: Probability Theory - A Comprehensive Course. Springer, Heidelberg (2007)Google Scholar
  10. 10.
    Lancaster, H.O.: Correlation and complete dependence of random variables. Ann. Math. Stat. 34, 1315–1321 (1963)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Nelsen, R.B.: An Introduction to Copulas. Springer, New York (2006)MATHGoogle Scholar
  12. 12.
    Olsen, E.T., Darsow, W.F., Nguyen, B.: Copulas and Markov operators. In: Proceedings of the Conference on Distributions with Fixed Marginals and Related Topics. IMS Lecture Notes. Monograph Series, vol. 28, pp. 244–259 (1996)Google Scholar
  13. 13.
    Schwarz, S.: A Note on the Structure of the Semigroup of Doubly-Stochastic Matrices. Mathematica Slovaca 17(4), 308–316 (1967)MATHGoogle Scholar
  14. 14.
    Sempi, C.: Conditional Expectations and Idempotent Copulae. In: Cuadras, C.M., et al. (eds.) Distributions with Given Marginals and Statistical Modelling, pp. 223–228. Kluwer, Netherlands (2002)Google Scholar
  15. 15.
    Trutschnig, W.: On a strong metric on the space of copulas and its induced dependence measure. J. Math. Anal. Appl. 384, 690–705 (2011)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wolfgang Trutschnig
    • 1
  1. 1.Research Unit for Intelligent Data Analysis and Graphical ModelsEuropean Centre for Soft Computing, Edificio de InvestigaciónMieresSpain

Personalised recommendations