Intraday Foreign Exchange Rate Forecasting Using Sparse Grids

Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 88)

Abstract

We present a machine learning approach using the sparse grid combination technique for the forecasting of intraday foreign exchange (fx) rates. The aim is to learn the impact of trading rules used by technical analysts just from the empirical behaviour of the market. To this end, the problem of analyzing a time series of transaction tick data is transformed by delay embedding into a D-dimensional regression problem using derived measurements from several different exchange rates. Then, a grid-based approach is used to discretize the resulting high-dimensional feature space. To cope with the curse of dimensionality we employ sparse grids in the form of the combination technique. Here, the problem is discretized and solved for a collection of conventional grids. The sparse grid solution is then obtained by linear combination of the solutions on these grids. We give the results of this approach to fx forecasting using real historical exchange data of the Euro, the US dollar, the Japanese Yen, the Swiss Franc and the British Pound from 2001 to 2005.

Notes

Acknowledgements

We thank Bastian Bohn and Alexander Hullmann for their assistance with the numerical experiments.

References

  1. 1.
    D. J. E. Baestaens, W. M. van den Bergh, and H. Vaudrey. Market inefficiencies, technical trading and neural networks. In C. Dunis, editor, Forecasting Financial Markets, pages 245–260. Wiley, 1996.Google Scholar
  2. 2.
    W. Brock, J. Lakonishok, and B. LeBaron. Simple technical trading rules and the stochastic properties of stock returns. The Journal of Finance, 47(5):1731–1764, 1992.CrossRefGoogle Scholar
  3. 3.
    H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Y.-W. Cheung and C. Y.-P. Wong. Foreign exchange traders in Hong Kong, Tokyo, and Singapore: A survey study. In T. Bos and T. A. Fetherston, editors, Advances in Pacific Basin Financial Markets, volume 5, pages 111–134. JAI, 1999.Google Scholar
  5. 5.
    R. Curcio, C. Goodhart, D. Guillaume, and R. Payne. Do technical trading rules generate profits? Conclusions from the intra-day foreign exchange market. Int. J. Fin. Econ., 2(4):267–280, 1997.CrossRefGoogle Scholar
  6. 6.
    M. A. H. Dempster, T. W. Payne, Y. S. Romahi, and G. W. P. Thompson. Computational learning techniques for intraday FX trading using popular technical indicators. IEEE Trans. Neural Networks, 12(4):744–754, 2001.CrossRefGoogle Scholar
  7. 7.
    M. Engel. Time series analysis. Part III Essay, University of Cambridge, 1991.Google Scholar
  8. 8.
    T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines. Advances in Computational Mathematics, 13:1–50, 2000.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    J. Garcke. Regression with the optimised combination technique. In W. Cohen and A. Moore, editors, Proceedings of the 23rd ICML ’06, pages 321–328, 2006.Google Scholar
  10. 10.
    J. Garcke. A dimension adaptive sparse grid combination technique for machine learning. In W. Read, J. W. Larson, and A. J. Roberts, editors, Proceedings of the 13th Biennial Computational Techniques and Applications Conference, CTAC-2006, volume 48 of ANZIAM J., pages C725–C740, 2007.Google Scholar
  11. 11.
    J. Garcke and M. Griebel. Classification with sparse grids using simplicial basis functions. Intelligent Data Analysis, 6(6):483–502, 2002.MATHGoogle Scholar
  12. 12.
    J. Garcke, M. Griebel, and M. Thess. Data mining with sparse grids. Computing, 67(3):225–253, 2001.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    J. Garcke and M. Hegland. Fitting multidimensional data using gradient penalties and the sparse grid combination technique. Computing, 84(1–2):1–25, April 2009.MathSciNetMATHGoogle Scholar
  14. 14.
    T. Gerstner and M. Griebel. Dimension–Adaptive Tensor–Product Quadrature. Computing, 71(1):65–87, 2003.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures. Neural Computation, 7:219–265, 1995.CrossRefGoogle Scholar
  16. 16.
    P. Grassberger and I. Procaccia. Characterization of strange attractors. Phys. Rev. Lett, 50:346–349, 1983.MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution of sparse grid problems. In P. de Groen and R. Beauwens, editors, Iterative Methods in Linear Algebra, pages 263–281. IMACS, Elsevier, North Holland, 1992.Google Scholar
  18. 18.
    D. M. Guillaume, M. M. Dacorogna, R. R. Davé, U. A. Müller, R. B. Olsen, and O. V. Pictet. From the bird’s eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets. Finance Stochast., 1(2):95–129, 1997.MATHCrossRefGoogle Scholar
  19. 19.
    M. Hegland, J. Garcke, and V. Challis. The combination technique and some generalisations. Linear Algebra and its Applications, 420(2–3):249–275, 2007.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    M. Hegland, O. M. Nielsen, and Z. Shen. Multidimensional smoothing using hyperbolic interpolatory wavelets. Electronic Transactions on Numerical Analysis, 17:168–180, 2004.MathSciNetMATHGoogle Scholar
  21. 21.
    I. Horenko. Finite element approach to clustering of multidimensional time series. SIAM Journal on Scientific Computing, 32:62–83, 2010.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    K. Iwatsubo and Y. Kitamura. Intraday evidence of the informational efficiency of the yen/dollar exchange rate. Applied Financial Economics, 19(14):1103–1115, 2009.CrossRefGoogle Scholar
  23. 23.
    H. Kantz and T. Schreiber. Nonlinear time series analysis. Cambridge University Press, 1997.Google Scholar
  24. 24.
    K. Lien. Day Trading the Currency Market. Wiley, 2005.Google Scholar
  25. 25.
    Y.-H. Lui and D. Mole. The use of fundamental and technical analyses by foreign exchange dealers: Hong Kong evidence. J. Int. Money Finance, 17(3):535–545, 1998.CrossRefGoogle Scholar
  26. 26.
    A. L. M. Verleysen, E. de Bodt. Forecasting financial time series through intrinsic dimension estimation and non-linear data projection. In J. Mira and J. V. Sánchez-Andrés, editors, Engineering Applications of Bio-Inspired Artificial Neural Networks, Volume II, volume 1607 of Lecture Notes in Computer Science, pages 596–605. Springer, 1999.Google Scholar
  27. 27.
    C. J. Neely and P. A. Weller. Intraday technical trading in the foreign exchange market. J. Int. Money Finance, 22(2):223–237, 2003.CrossRefGoogle Scholar
  28. 28.
    C. Osler. Support for resistance: Technical analysis and intraday exchange rates. Economic Policy Review, 6(2):53–68, 2000.MathSciNetGoogle Scholar
  29. 29.
    T. R. Reid. The United States of Europe, The New Superpower and the End of the American Supremacy. Penguin Books, 2004.Google Scholar
  30. 30.
    B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.Google Scholar
  31. 31.
    F. Takens. Detecting strange attractors in turbulence. In D. Rand and L.-S. Young, editors, Dynamical Systems and Turbulence, volume 898 of Lecture Notes in Mathematics, pages 366–381. Springer, 1981.Google Scholar
  32. 32.
    M. P. Taylor and H. Allen. The use of technical analysis in the foreign exchange market. J. Int. Money Finance, 11(3):304–314, 1992.CrossRefGoogle Scholar
  33. 33.
    A. N. Tikhonov and V. A. Arsenin. Solutions of ill-posed problems. W. H. Winston, Washington D.C., 1977.Google Scholar
  34. 34.
    G. Tsibouris and M. Zeidenberg. Testing the efficient markets hypothesis with gradient descent algorithms. In A.-P. Refenes, editor, Neural Networks in the Capital Markets, chapter 8, pages 127–136. Wiley, 1995.Google Scholar
  35. 35.
    G. Wahba. Spline models for observational data, volume 59 of Series in Applied Mathematics. SIAM, Philadelphia, 1990.MATHCrossRefGoogle Scholar
  36. 36.
    C. Zenger. Sparse grids. In W. Hackbusch, editor, Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, Kiel, 1990, volume 31 of Notes on Num. Fluid Mech. Vieweg-Verlag, 1991.Google Scholar
  37. 37.
    H. G. Zimmermann, R. Neuneier, and R. Grothmann. Multi-agent modeling of multiple FX-markets by neural networks. IEEE Trans. Neural Networks, 12(4):735–743, 2001.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jochen Garcke
    • 1
    • 2
  • Thomas Gerstner
    • 3
  • Michael Griebel
    • 1
  1. 1.Institut für Numerische SimulationUniversität BonnBonnGermany
  2. 2.Fraunhofer SCAISchloss BirlinghovenSankt AugustinGermany
  3. 3.Institut für MathematikJohann Wolfgang Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations