Secure Distributed Framework for Achieving ε-Differential Privacy

  • Dima Alhadidi
  • Noman Mohammed
  • Benjamin C. M. Fung
  • Mourad Debbabi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7384)

Abstract

Privacy-preserving data publishing addresses the problem of disclosing sensitive data when mining for useful information. Among the existing privacy models, ε-differential privacy provides one of the strongest privacy guarantees. In this paper, we address the problem of private data publishing where data is horizontally divided among two parties over the same set of attributes. In particular, we present the first generalization-based algorithm for differentially private data release for horizontally-partitioned data between two parties in the semi-honest adversary model. The generalization algorithm correctly releases differentially-private data and protects the privacy of each party according to the definition of secure multi-party computation. To achieve this, we first present a two-party protocol for the exponential mechanism. This protocol can be used as a subprotocol by any other algorithm that requires exponential mechanism in a distributed setting. Experimental results on real-life data suggest that the proposed algorithm can effectively preserve information for a data mining task.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mohammed, N., Fung, B.C.M., Hung, P.C.K., Lee, C.: Centralized and distributed anonymization for high-dimensional healthcare data. ACM Transactions on Knowledge Discovery from Data (TKDD) 4(4), 18:1–18:33 (2010)CrossRefGoogle Scholar
  2. 2.
    Jurczyk, P., Xiong, L.: Distributed anonymization: Achieving privacy for both data subjects and data providers. In: Proceedings of the Annual IFIP WG 11.3 Working Conference on Data and Applications Security, DBSec (2009)Google Scholar
  3. 3.
    Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Transaction on Knowledge and Data Engineering (TKDE) (2001)Google Scholar
  4. 4.
    Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems (2002)Google Scholar
  5. 5.
    Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: ℓ-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD) (2007)Google Scholar
  6. 6.
    Wang, K., Fung, B.C.M., Yu, P.S.: Handicapping attacker’s confidence: An alternative to k-anonymization. Knowledge and Information Systems (KAIS) 11(3), 345–368 (2007)CrossRefGoogle Scholar
  7. 7.
    Wong, R.C.W., Fu, A.W.C., Wang, K., Pei, J.: Minimality attack in privacy preserving data publishing. In: Proceedings of the International Conference on Very Large Data Bases (VLDB) (2007)Google Scholar
  8. 8.
    Zhang, L., Jajodia, S., Brodsky, A.: Information disclosure under realistic assumptions: Privacy versus optimality. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS) (2007)Google Scholar
  9. 9.
    Cormode, G., Srivastava, D., Li, N., Li, T.: Minimizing minimality and maximizing utility: Analyzing methodbased attacks on anonymized data. In: Proceedings of the International Conference on Very Large Data Bases (VLDB) (2010)Google Scholar
  10. 10.
    Ganta, S.R., Kasiviswanathan, S., Smith, A.: Composition attacks and auxiliary information in data privacy. In: Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (2008)Google Scholar
  11. 11.
    Kifer, D.: Attacks on privacy and de finetti’s theorem. In: Proceedings of the ACM Conference on Management of Data (SIGMOD) (2009)Google Scholar
  12. 12.
    Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Mohammed, N., Chen, R., Fung, B.C.M., Yu, P.S.: Differentially private data release for data mining. In: Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (2011)Google Scholar
  14. 14.
    Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: A survey of recent developments. ACM Computing Surveys 42(4), 1–53 (2010)CrossRefGoogle Scholar
  15. 15.
    LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In: Proceedings of the IEEE International Conference on Data Engineering (ICDE) (2006)Google Scholar
  16. 16.
    Fung, B.C.M., Wang, K., Yu, P.S.: Anonymizing classification data for privacy preservation. IEEE Transactions on Knowledge and Data Engineering (TKDE) 19(5), 711–725 (2007)CrossRefGoogle Scholar
  17. 17.
    Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms. In: Proceedings of the International Conference on Data Engineering (ICDE) (March 2010)Google Scholar
  18. 18.
    Jiang, W., Clifton, C.: A secure distributed framework for achieving k-anonymity. Very Large Data Bases Journal (VLDBJ) 15(4), 316–333 (2006)CrossRefGoogle Scholar
  19. 19.
    Mohammed, N., Fung, B.C.M., Debbabi, M.: Anonymity meets game theory: secure data integration with malicious participants. Very Large Data Bases Journal (VLDBJ) 20(4), 567–588 (2011)CrossRefGoogle Scholar
  20. 20.
    Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy preserving distributed data mining. ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) Explorations Newsletter 4(2), 28–34 (2002)Google Scholar
  21. 21.
    Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: Proceedings of the ACM Symposium on Theory of Computing (STOC) (2010)Google Scholar
  22. 22.
    Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our Data, Ourselves: Privacy Via Distributed Noise Generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (2007)Google Scholar
  24. 24.
    Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge University Press (2001)Google Scholar
  25. 25.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  26. 26.
    Yao, A.C.: Protocols for secure computations. In: Proc. of the IEEE Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS) (1982)Google Scholar
  27. 27.
    Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS), 486–497 (2007)Google Scholar
  28. 28.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocol. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2001)Google Scholar
  29. 29.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game - a completeness theorem for protocols with honest majority. In: Proceedings of the ACM Symposium on the Theory of Computing (STOC) (1987)Google Scholar
  30. 30.
    Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptology 15(3), 177–206 (2002)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)Google Scholar
  32. 32.
    Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: Proceedings of the ACM Conference on Management of Data (SIGMOD) (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dima Alhadidi
    • 1
  • Noman Mohammed
    • 1
  • Benjamin C. M. Fung
    • 1
  • Mourad Debbabi
    • 1
  1. 1.Concordia Institute for Information Systems EngineeringConcordia UniversityMontrealCanada

Personalised recommendations