Fault-Tolerant Privacy-Preserving Statistics

  • Marek Jawurek
  • Florian Kerschbaum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7384)


Real-time statistics on smart meter consumption data must preserve consumer privacy and tolerate smart meter failures. Existing protocols for this private distributed aggregation model suffer from various drawbacks that disqualify them for application in the smart energy grid. Either they are not fault-tolerant or if they are, then they require bi-directional communication or their accuracy decreases with an increasing number of failures. In this paper, we provide a protocol that fixes these problems and furthermore, supports a wider range of exchangeable statistical functions and requires no group key management. A key-managing authority ensures the secure evaluation of authorized functions on fresh data items using logical time and a custom zero-knowledge proof providing differential privacy for an unbounded number of statistics calculations. Our privacy-preserving protocol provides all the properties that make it suitable for use in the smart energy grid.


Privacy Smart Grid Statistics Aggregation Stream Fault-Tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bohli, J.-M., Ugus, O., Sorge, C.: A privacy model for smart metering. In: Proceedings of the First IEEE International Workshop on Smart Grid Communications (in Conjunction with IEEE ICC 2010) (2010)Google Scholar
  2. 2.
    Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault tolerance. In: Proceedings of the 16th International Conference on Financial Cryptography and Data Security, FC 2012 (2012)Google Scholar
  3. 3.
    Danezis, G., Kohlweiss, M., Rial, A.: Differentially private billing with rebates. Cryptology ePrint Archive, Report 2011/134 (2011),
  4. 4.
    Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Garcia, F.D., Jacobs, B.: Privacy-Friendly Energy-Metering via Homomorphic Encryption. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 226–238. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy mechanisms. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 351–360. ACM, New York (2009)CrossRefGoogle Scholar
  7. 7.
    Goldreich, O., Warning, A.: Secure multi-party computation (1998)Google Scholar
  8. 8.
    Hart, G.: Nonintrusive appliance load monitoring. Proceedings of the IEEE 80(12), 1870–1891 (1992)CrossRefGoogle Scholar
  9. 9.
    Hart, G.W.: Residential energy monitoring and computerized surveillance via utility power flows. IEEE Technology and Society Magazine (June 1989)Google Scholar
  10. 10.
    Heck, W.: Smart energy meter will not be compulsory. NRC Handelsblad (online) (April 2009),
  11. 11.
    Jamieson, A.: Smart meters could be ’spy in the home’. Telegraph (UK) (online) (October 2009),
  12. 12.
    Jawurek, M., Johns, M., Kerschbaum, F.: Plug-in privacy for smart metering billing. CoRR, abs/1012.2248 (2010)Google Scholar
  13. 13.
    Jawurek, M., Johns, M., Rieck, K.: Smart metering de-pseudonymization. In: ACSAC, pp. 227–236 (2011)Google Scholar
  14. 14.
    Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-Friendly Aggregation for the Smart-Grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 175–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Lam, H., Fung, G., Lee, W.: A novel method to construct taxonomy electrical appliances based on load signaturesof. IEEE Transactions on Consumer Electronics 53(2), 653–660 (2007)CrossRefGoogle Scholar
  16. 16.
    Laughman, C., Lee, K., Cox, R., Shaw, S., Leeb, S., Norford, L., Armstrong, P.: Power signature analysis. IEEE on Power and Energy Magazine 1(2), 56–63 (2003)CrossRefGoogle Scholar
  17. 17.
    Lisovich, M.A., Mulligan, D.K., Wicker, S.B.: Inferring personal information from demand-response systems. IEEE Security and Privacy 8(1), 11–20 (2010)CrossRefGoogle Scholar
  18. 18.
    McSherry, F.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. Commun. ACM 53(9), 89–97 (2010)CrossRefGoogle Scholar
  19. 19.
    Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs of a smart meter. In: Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, BuildSys 2010, pp. 61–66. ACM, New York (2010)CrossRefGoogle Scholar
  20. 20.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  21. 21.
    Petrlic, R.: A privacy-preserving concept for smart grids. In: Sicherheit in vernetzten Systemen: 18. DFN Workshop, pp. B1–B14. Books on Demand GmbH (2010)Google Scholar
  22. 22.
    Prudenzi, A.: A neuron nets based procedure for identifying domestic appliances pattern-of-use from energy recordings at meter panel. IEEE Power Engineering Society Winter Meeting 2, 941–946 (2002)Google Scholar
  23. 23.
    Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series with transformation and encryption. In: Proceedings of the 2010 International Conference on Management of Data, SIGMOD 2010, pp. 735–746. ACM, New York (2010)CrossRefGoogle Scholar
  24. 24.
    Rial, A., Danezis, G.: Privacy-preserving smart metering. Technical report, Microsoft Research (November 2010)Google Scholar
  25. 25.
    Shi, E., Chan, T.-H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: NDSS (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marek Jawurek
    • 1
  • Florian Kerschbaum
    • 1
  1. 1.SAP ResearchKarlsruheGermany

Personalised recommendations