Of (Zombie) Mice and Animats

Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 5)

Abstract

The Chinese Room Argument purports to show that ‘syntax is not sufficient for semantics’; an argument which led John Searle to conclude that ‘programs are not minds’ and hence that no computational device can ever exhibit true understanding. Yet, although this controversial argument has received a series of criticisms, it has withstood all attempts at decisive rebuttal so far. One of the classical responses to CRA has been based on equipping a purely computational device with a physical robot body. This response, although partially addressed in one of Searle’s original contra arguments - the ‘robot reply’ - more recently gained friction with the development of embodiment and enactivism, two novel approaches to cognitive science that have been exciting roboticists and philosophers alike. Furthermore, recent technological advances - blending biological beings with computational systems - have started to be developed which superficially suggest that mind may be instantiated in computing devices after all. This paper will argue that (a) embodiment alone does not provide any leverage for cognitive robotics wrt the CRA, when based on a weak form of embodiment and that (b) unless they take the body into account seriously, hybrid bio-computer devices will also share the fate of their disembodied or robotic predecessors in failing to escape from Searle’s Chinese room.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakkum, D.J., Chao, Z.C., Potter, S.M.: Spatio-temporal electrical stimuli shape behavior of an embodied cortical network in a goal-directed learning task. J. Neural Engineering 5(3), 310–323 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barandiaran, X., Moreno, A.: On what makes certain dynamical systems cognitive: a minimally cognitive organization program. Adaptive Behavior 14(2), 171–185 (2006)CrossRefGoogle Scholar
  3. 3.
    Berger, T.W., Hampson, R.E., Song, D., Goonawardena, A., Marmarelis, V.Z., Deadwyler, S.A.: A cortical neural prosthesis for restoring and enhancing memory. J. Neural Eng. 8(4), 46017 (2011)CrossRefGoogle Scholar
  4. 4.
    Blake, W.: Cochlear Implants: Principles and Practices. Lippincott Williams & Wilkins, Philadelphia (2000)Google Scholar
  5. 5.
    Botvinick, M., Cohen, J.D.: Rubber hand ‘feels’ what eyes see. Nature 391, 756 (1998)CrossRefGoogle Scholar
  6. 6.
    Bringsjord, S.: Real Robots and the Missing Thought-Experiment in the Chinese Room Dialectic. In: Preston, J., Bishop, M. (eds.) Views into the Chinese Room: New Essays on Searle and Artificial Intelligenc. Oxford University Press, New York (2002)Google Scholar
  7. 7.
    Brunner, P., Bianchi, L., Guger, C., Cincotti, F., Schalk, G.: Current trends in hardware and software for brain-computer interfaces (BCIs). J. Neural Eng. 8, 025001 (2011)CrossRefGoogle Scholar
  8. 8.
    Caruana, D.A., Warburton, E.C., Bashir, Z.I.: Induction of Activity-Dependent LTD Requires Muscarinic Receptor Activation in Medial Prefrontal Cortex. J. Neurosci. 31(50), 18464–18478 (2011)CrossRefGoogle Scholar
  9. 9.
    Clark, A.: Review of Radical Embodied Cognitive Science by A. Chemero. The MIT Press (2009)Google Scholar
  10. 10.
    Cole, D.: The Chinese Room Argument. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2009) (Winter 2009 Edition), http://plato.stanford.edu/archives/win2009/entries/chinese-room
  11. 11.
    Cosmelli, D., Thompson, E.: Embodiment or Envatment? Reflections on the Bodily Basis of Consciousness. In: Stewart, J., Gapenne, O., di Paolo, E. (eds.) Enaction: Towards a New Paradigm for Cognitive Science. MIT Press (2010)Google Scholar
  12. 12.
    Daly, J.J., Wolpaw, J.R.: Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 7, 1032–1043 (2008)CrossRefGoogle Scholar
  13. 13.
    Deisseroth, K.: Optogenetics. Nat. Methods 8(1), 26–29 (2011)CrossRefGoogle Scholar
  14. 14.
    De Marse, T.B., Wagenaar, D.A., Blau, A.W., Potter, S.M.: The neurally controlled animat: biological brains acting with simulated bodies. Auton. Robot 11, 305–310 (2001)CrossRefGoogle Scholar
  15. 15.
    Downes, J.H., Hammond, M.W., Xydas, D., Spencer, M., Becerra, V.M., Warwick, K., Whalley, B.J., Nasuto, S.J.: Emergence of a Small-World Functional Network in Cultured Neurons (2011) (submitted)Google Scholar
  16. 16.
    Fins, J.J.: Deep Brain Stimulation. In: Post, S.G. (ed.) Encyclopedia of Bioethics, 3rd edn., vol. 2, pp. 629–634. MacMillan Reference, New York (2004)Google Scholar
  17. 17.
    Fornos, A., Sommerhalder, J., Pelizzone, M.: Reading with a simulated 60-channel implant. Frontiers in Neuroscience 5, 57 (2011)CrossRefGoogle Scholar
  18. 18.
    Froese, T., Di Paolo, E.A.: The Enactive Approach: Theoretical Sketches From Cell to Society. Pragmatics & Cognition 19(1), 1–36 (2011)CrossRefGoogle Scholar
  19. 19.
    Froese, T., Ziemke, T.: Enactive Artificial Intelligence: Investigating the systemic organization of life and mind. Journal of Artificial Intelligence 173(3-4), 466–500 (2009)CrossRefGoogle Scholar
  20. 20.
    Gradinaru, V., Thompson, K.R., Zhang, F., Mogri, M., Kay, K., Schneider, M.B., Deisseroth, K.: Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 27(52), 14231–14238 (2007)CrossRefGoogle Scholar
  21. 21.
    Hammond, M.W., Xydas, D., Downes, J.H., Becerra, V.M., Warwick, K., Nasuto, S.J., Whalley, B.J.: Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures (submitted 2012)Google Scholar
  22. 22.
    Hasselmo, M.E., Cekic, M.: Suppression of synaptic transmission allow combination of associative feedback and self-organizing feedforward connections in the neocortex. Behavioural Brain Research 79(1-2), 153–161 (1996)CrossRefGoogle Scholar
  23. 23.
    Hasselmo, M.E., Schnell, E., et al.: Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J. Neurosci. 15(7), 5249–5262 (1995)Google Scholar
  24. 24.
    Hatsopoulos, N.G., Donoghue, J.P.: The science of neural interface systems. Annual Review of Neuroscience 32, 249–266 (2009)CrossRefGoogle Scholar
  25. 25.
    Kringelbach, M.L., Jenkinson, N., Owen, S.L.F., Aziz, T.Z.: Translational principles of deep brain stimulation. Nature Reviews Neuroscience 8, 623–635 (2007)CrossRefGoogle Scholar
  26. 26.
    Krusienski, D.J., Grosse-Wentrup, M., Galan, F., Coyle, D., Miller, K.J., Forney, E., Anderson, C.W.: Critical issues in state-of-the-art brain–computer interface signal processing. J. Neural Eng. 8, 25002 (2011)CrossRefGoogle Scholar
  27. 27.
    Lebedev, M.A., Nicolelis, M.A.: Brain-machine interfaces: past, present and future. Trends Neurosci. 29, 536–546 (2006)CrossRefGoogle Scholar
  28. 28.
    Marom, S., Shahaf, G.: Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy. Quarterly Reviews of Biophysics 35, 63–87 (2002)CrossRefGoogle Scholar
  29. 29.
    Maye, A., Engel, A.K.: A discrete computational model of sensorimotor contingencies for object perception and control of behavior. In: 2011 IEEE International Conference on Robotics and Automation, ICRA (2011)Google Scholar
  30. 30.
    McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E.: A proposal for the Dartmouth Summer Research Project on Artificial Intelligence, Stanford, USA (1955)Google Scholar
  31. 31.
    Mintz, M.: A biomimetic model aimed at recovering learning in a brain damaged animal: Converging neuroscience with technology. Strategies for Engineered Negligible Senescence Meeting, Cambridge, UK (2011)Google Scholar
  32. 32.
    Morse, A.F., Herrera, C., Clowes, R., Montebelli, A., Ziemke, T.: The role of robotic modelling in cognitive science. New Ideas in Psychology 29(3), 312–324 (2011)CrossRefGoogle Scholar
  33. 33.
    Mussa-Ivaldi, F.A., Miller, L.E.: Brain-machine interfaces: computational demands and clinical needs meet basic neuroscience. Trends Neurosci. 26, 329–334 (2003)CrossRefGoogle Scholar
  34. 34.
    Muzumdar, A.: Powered Upper Limb Prostheses: Control, Implementation and Clinical Application. Springer (2004)Google Scholar
  35. 35.
    Newell, A., Simon, H.A.: Computer Science as Empirical Inquiry: Symbols and Search. Communications of the ACM 19(3), 113–126 (1976)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Nicolelis, M.A.L., Chapin, J.K.: Controlling robots with the mind. Scientific American 287, 46–53 (2002)CrossRefGoogle Scholar
  37. 37.
    Nöe, A.: Action in perception. MIT Press, Cambridge (2004)Google Scholar
  38. 38.
    Nöe, A.: Out of Our Heads: Why You Are Not Your Brain, and Other Lessons from the Biology of Consciousness (2010)Google Scholar
  39. 39.
    Novellino, A., Chiappalone, M., Tessadori, J., D’Angelo, P., Defranchi, E., Martinoia, S.: Bioartificial Brains and Mobile Robots. In: Brzedkowski, J. (ed.) Mobile Robots - Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training. InTech (2011)Google Scholar
  40. 40.
    O’Regan, J.K., Nöe, A.: A sensorimotor account of visual perception and consciousness. Behavioral and Brain Sciences 24, 939–1011 (2001)CrossRefGoogle Scholar
  41. 41.
    O’Regan, J.K.: How to make a robot that feels. In: 4th International Conference on Cognitive Systems, CogSys 2010, Zurich, Switzerland (2010)Google Scholar
  42. 42.
    O’Regan, J.K.: Why Red Doesn’t Sound Like a Bell: Understanding the Feel of Consciousness. Oxford University Press, New York (2011)CrossRefGoogle Scholar
  43. 43.
    Pfeifer, R., Scheier, C.: Understanding intelligence. MIT Press, Cambridge (1999)Google Scholar
  44. 44.
    Pfeifer, R., Bongard, J.: How the body shapes the way we think: a new view of intelligence. The MIT Press (2007)Google Scholar
  45. 45.
    Preston, J., Bishop, M. (eds.): Views into the Chinese Room: New Essays on Searle and Artificial Intelligence. Oxford University Press, New York (2002)MATHGoogle Scholar
  46. 46.
    Searle, J.: Minds, Brains, and Programs. Behavioral and Brain Sciences 3, 417–457 (1981)CrossRefGoogle Scholar
  47. 47.
    Shahaf, G., Marom, S.: Learning in networks of cortical neurons. J. Neurosci. 21, 8782–8788 (2001)Google Scholar
  48. 48.
    Spencer, M., Downes, J.H., Xydas, D., Hammond, M.W., Becerra, V.M., Warwick, K., Whalley, B.J., Nasuto, S.J.: Multi Scale Evolving Complex Network Model of Functional Connectivity in Neuronal Cultures. IEEE Transactions on Biomedical Engineering (2011) (epub. ahead of print)Google Scholar
  49. 49.
    Sporns, O.: Networks of the Brain. The MIT Press (2011)Google Scholar
  50. 50.
    Stuber, G.D., Sparta, D.R., Stamatakis, A.M., van Leeuwen, W.A., Hardjoprajitno, J.E., Cho, S., Tye, K.M., Kempadoo, K.A., Zhang, F., Deisseroth, K., Bonci, A.: Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–380 (2011)CrossRefGoogle Scholar
  51. 51.
    Talwar, S.K., Xu, S., Hawley, E., Weiss, S., Moxon, K., Chapin, J.: Rat navigation guided by remote control. Nature 417, 37–38 (2002)CrossRefGoogle Scholar
  52. 52.
    Tan, D.S., Nijholt, A. (eds.): Brain-Computer Interfaces. Applying our Minds to Human-Computer Interaction. Springer (2010)Google Scholar
  53. 53.
    Varela, F., Thompson, E., Rosch, E.: The embodied mind: Cognitive science and human experience. MIT Press, Cambridge (1991)Google Scholar
  54. 54.
    Warwick, K., Gasson, M., Hutt, B., Goodhew, I., Kyberd, P., Andrews, B., Teddy, P., Shad, A.: The Application of Implant Technology for Cybernetic Systems. Archives of Neurology 60(10), 1369–1373 (2003)CrossRefGoogle Scholar
  55. 55.
    Warwick, K., Xydas, D., Nasuto, S.J., Becerra, V.M., Hammond, M.W., Downes, J.H., Marshall, S., Whalley, B.J.: Controlling a mobile robot with a biological brain. Defence Science Journal 60(1), 5–14 (2010)Google Scholar
  56. 56.
    Warwick, K., Nasuto, S.J., Becerra, V.M., Whalley, B.J.: Experiments with an In-Vitro Robot Brain. In: Cai, Y. (ed.) Computing with Instinct 2010. LNCS(LNAI), vol. 5897, pp. 1–15. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  57. 57.
    Zrenner, E.: Will retinal implants restore vision? Science 295, 1022–1025 (2002)CrossRefGoogle Scholar
  58. 58.
    Xydas, D., Downes, J.H., Spencer, M.C., Hammond, M.W., Nasuto, S.J., Whalley, B.J., Becerra, V.M., Warwick, K.: Revealing ensemble state transition patterns in multi-electrode neuronal recordings using hidden Markov models. IEEE Transactions on Neural Systems and Rehabilitation Engineering 19(4), 345–355 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.GoldsmithsUniversity of LondonLondonUK
  2. 2.University of ReadingReadingUK

Personalised recommendations