Advertisement

Verification of Restricted EA-Equivalence for Vectorial Boolean Functions

  • Lilya Budaghyan
  • Oleksandr Kazymyrov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7369)

Abstract

We present algorithms for solving the restricted extended affine equivalence (REA-equivalence) problem for any m-dimensional vectorial Boolean functions in n variables. The best of them has complexity O(22n + 1) for REA-equivalence F(x) = M 1 ·G(x ⊕ V 2) ⊕ M 3 ·x ⊕ V 1. The algorithms are compared with previous effective algorithms for solving the linear and the affine equivalence problem for permutations by Biryukov et. al [1].

Keywords

EA-equivalence Matrix Representation S-box Vectorial Boolean Function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biryukov, A., De Canniere, C., Braeken, A., Preneel, B.: A Toolbox for Cryptanalysis: Linear and Affine Equivalence Algorithms. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  3. 3.
    Kwon, D.: New Block Cipher: ARIA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Oliynykov, R., Gorbenko, I., Dolgov, V., Ruzhentsev, V.: Symmetric block cipher ”Kalyna”. Applied Radio Electronics 6, 46–63 (2007) (in Ukrainian)Google Scholar
  5. 5.
    Oliynykov, R., Gorbenko, I., Dolgov, V., Ruzhentsev, V.: Results of Ukrainian National Public Cryptographic Competition. Tatra Mt. Math. Publ. 47, 99–113 (2010), http://www.sav.sk/journals/uploads/0317154006ogdr.pdf MathSciNetzbMATHGoogle Scholar
  6. 6.
    Nyberg, K.: Differentially Uniform Mappings for Cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology 4(1), 3–72 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Chabaud, F., Vaudenay, S.: Links between Differential and Linear Cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. 9.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Carlet, C.: Vectorial Boolean Functions for Cryptography. In: Crama, Y., Hammer, P. (eds.) Chapter of the Monography Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 398–469. Cambridge University Press (2010)Google Scholar
  11. 11.
    Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Designs, Codes and Cryptography 15(2), 125–156 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Williams, V.V.: Breaking the Coppersmith-Winograd barrier (November 2011), http://www.cs.berkeley.edu/~virgi/matrixmult.pdf
  13. 13.
    Stein, W.A., et al.: Sage Mathematics Software (Version 4.8.2), The Sage Development Team (2012), http://www.sagemath.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lilya Budaghyan
    • 1
  • Oleksandr Kazymyrov
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations