Advertisement

Sequences and Functions Derived from Projective Planes and Their Difference Sets

  • Alexander Pott
  • Qi Wang
  • Yue Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7369)

Abstract

Many interesting features of sequences and functions defined on finite fields are related to the interplay between the additive and the multiplicative structure of the finite field. In this paper, we survey some of these objects which are related to difference set representations of projective planes.

Keywords

projective plane semifield difference set sequence isomorphism of incidence structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pott, A., Zhou, Y.: Switching Construction of Planar Functions on Finite Fields. In: Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 135–150. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Beth, T., Jungnickel, D., Lenz, H.: Design theory. Vol. I, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 69. Cambridge University Press, Cambridge (1999)zbMATHCrossRefGoogle Scholar
  3. 3.
    Pott, A.: Finite geometry and character theory. Lecture Notes in Mathematics, vol. 1601. Springer, Berlin (1995)zbMATHGoogle Scholar
  4. 4.
    Schmidt, B.: Characters and cyclotomic fields in finite geometry. Lecture Notes in Mathematics, vol. 1797. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    Jungnickel, D.: On automorphism groups of divisible designs. Canad. J. Math. 34(2), 257–297 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dembowski, P., Piper, F.: Quasiregular collineation groups of finite projective planes. Math. Z. 99, 53–75 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ghinelli, D., Jungnickel, D.: Finite projective planes with a large abelian group. In: Surveys in Combinatorics, 2003, Bangor. London Math. Soc. Lecture Note Ser., vol. 307, pp. 175–237. Cambridge Univ. Press, Cambridge (2003)Google Scholar
  8. 8.
    Muzychuk, M.: On the isomorphism problem for cyclic combinatorial objects. Discrete Math. 197/198, 589–606 (1999); 16th British Combinatorial Conference, London (1997)MathSciNetGoogle Scholar
  9. 9.
    Jungnickel, D.: The isomorphism problem for abelian projective planes. Appl. Algebra Engrg. Comm. Comput. 19(3), 195–200 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ott, U.: Endliche zyklische Ebenen. Math. Z. 144(3), 195–215 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Ho, C.Y.: Finite projective planes with abelian transitive collineation groups. J. Algebra 208(2), 533–550 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Xiang, Q.: Recent progress in algebraic design theory. Finite Fields Appl. 11(3), 622–653 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Dempwolff, U.: Automorphisms and equivalence of bent functions and of difference sets in elementary abelian 2-groups. Comm. Algebra 34(3), 1077–1131 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Gordon, B., Mills, W.H., Welch, L.R.: Some new difference sets. Canad. J. Math. 14, 614–625 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kantor, W.M.: Note on GMW designs. European J. Combin. 22(1), 63–69 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ma, S.L., Schmidt, B.: Relative (p a,p b,p a,p a − b)-difference sets: a unified exponent bound and a local ring construction. Finite Fields Appl. 6(1), 1–22 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Schmidt, B.: On (p a,p b,p a,p a − b)-relative difference sets. J. Algebraic Combin. 6(3), 279–297 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Chen, Y.Q.: Divisible designs and semi-regular relative difference sets from additive Hadamard cocycles. J. Combin. Theory Ser. A 118(8), 2185–2206 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Horadam, K.J.: Hadamard matrices and their applications. Princeton University Press, Princeton (2007)zbMATHGoogle Scholar
  20. 20.
    Hughes, D.R., Piper, F.C.: Projective planes. Graduate Texts in Mathematics, vol. 6. Springer, New York (1973)zbMATHGoogle Scholar
  21. 21.
    Gordon, D.M.: The prime power conjecture is true for n < 2,000,000. Electron. J. Combin. 1, Research Paper 6, approx. 7 pp. (1994) (electronic)Google Scholar
  22. 22.
    Arasu, K.T., Dillon, J.F., Jungnickel, D., Pott, A.: The solution of the Waterloo problem. J. Combin. Theory Ser. A 71(2), 316–331 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Arasu, K.T., Dillon, J.F., Leung, K.H., Ma, S.L.: Cyclic relative difference sets with classical parameters. J. Combin. Theory Ser. A 94(1), 118–126 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Wolfmann, J.: Almost perfect autocorrelation sequences. IEEE Trans. Inform. Theory 38(4), 1412–1418 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Pott, A., Bradley, S.P.: Existence and nonexistence of almost-perfect autocorrelation sequences. IEEE Trans. Inform. Theory 41(1), 301–304 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Blokhuis, A., Jungnickel, D., Schmidt, B.: Proof of the prime power conjecture for projective planes of order n with abelian collineation groups of order n 2. Proc. Amer. Math. Soc. 130(5), 1473–1476 (2002) (electronic)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Lavrauw, M., Polverino, O.: Finite semifields. In: Storme, L., Beule, J.D. (eds.) Current Reserach Topics in Galois Geometry. Mathematics Research Developments, pp. 131–159. Nova Science Publishers, Inc., New York (2012)Google Scholar
  28. 28.
    Ganley, M.J.: On a paper of P. Dembowski and T. G. Ostrom: Planes of order n with collineation groups of order n 2. Math. Z. 103, 239–258 (1968); Arch. Math. (Basel) 27(1), 93–98 (1976)Google Scholar
  29. 29.
    Jungnickel, D.: On a theorem of Ganley. Graphs Combin. 3(2), 141–143 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Kantor, W.M.: Commutative semifields and symplectic spreads. J. Algebra 270(1), 96–114 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Zhou, Y.: (2n,2n,2n,1)-relative difference sets and their representations (2010) (manuscript)Google Scholar
  32. 32.
    Albert, A.A.: Finite division algebras and finite planes. In: Proc. Sympos. Appl. Math., vol. 10, pp. 53–70. American Mathematical Society, Providence (1960)Google Scholar
  33. 33.
    Coulter, R.S., Henderson, M.: Commutative presemifields and semifields. Adv. Math. 217(1), 282–304 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Zhou, Y., Pott, A.: A new family of semifields with 2 parameters. arXiv:1103.4555 (March 2011)Google Scholar
  35. 35.
    Kraemer, R.G.: Proof of a conjecture on Hadamard 2-groups. J. Combin. Theory Ser. A 63(1), 1–10 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Nyberg, K.: Differentially Uniform Mappings for Cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)Google Scholar
  37. 37.
    Carlet, C.: Vectorial boolean functions for cryptography. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 398–469. Cambridge University Press (2010)Google Scholar
  38. 38.
    Carlet, C.: Relating three nonlinearity parameters of vectorial functions and building APN functions from bent functions. Des. Codes Cryptogr. 59(1-3), 89–109 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Chabaud, F., Vaudenay, S.: Links between Differential and Linear Cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  40. 40.
    Dillon, J.F.: Elementary Hadamard Difference-Sets. ProQuest LLC, Ann Arbor (1974); Thesis (Ph.D.)–University of Maryland, College ParkGoogle Scholar
  41. 41.
    Zhang, X., Guo, H., Gao, Z.: Characterizations of bent and almost bent function on \(\Bbb Z_p^2\). Graphs Combin. 27(4), 603–620 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Coulter, R.S., Matthews, R.W.: Planar functions and planes of Lenz-Barlotti class II. Des. Codes Cryptogr. 10(2), 167–184 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inform. Theory 52(5), 2018–2032 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Helleseth, T., Hollmann, H.D.L., Kholosha, A., Wang, Z., Xiang, Q.: Proofs of two conjectures on ternary weakly regular bent functions. IEEE Trans. Inform. Theory 55(11), 5272–5283 (2009)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Helleseth, T., Kholosha, A.: On the Dual of Monomial Quadratic p-ary Bent Functions. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) SSC 2007. LNCS, vol. 4893, pp. 50–61. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  46. 46.
    Helleseth, T., Kholosha, A.: New binomial bent functions over the finite fields of odd characteristic. IEEE Trans. Inform. Theory 56(9), 4646–4652 (2010)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Carlet, C., Mesnager, S.: On Dillon’s class H of bent functions, Niho bent functions and o-polynomials. J. Combin. Theory Ser. A 118(8), 2392–2410 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Ganley, M.J.: Direct product difference sets. J. Combinatorial Theory Ser. A 23(3), 321–332 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Jungnickel, D., de Resmini, M.J.: Another case of the prime power conjecture for finite projective planes. Adv. Geom. 2(3), 215–218 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Hiramine, Y.: Difference sets relative to disjoint subgroups. J. Combin. Theory Ser. A 88(2), 205–216 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Golomb, S.W., Gong, G.: Signal design for good correlation. Cambridge University Press, Cambridge (2005); For wireless communication, cryptography, and radarGoogle Scholar
  52. 52.
    Helleseth, T., Gong, G.: New nonbinary sequences with ideal two-level autocorrelation. IEEE Trans. Inform. Theory 48(11), 2868–2872 (2002)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Pott, A.: On projective planes admitting elations and homologies. Geom. Dedicata 52(2), 181–193 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Ding, C., Yuan, J.: A family of skew Hadamard difference sets. J. Combin. Theory Ser. A 113(7), 1526–1535 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Ding, C., Wang, Z., Xiang, Q.: Skew Hadamard difference sets from the Ree-Tits slice symplectic spreads in PG(3,32h + 1). J. Combin. Theory Ser. A 114(5), 867–887 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Feng, T., Xiang, Q.: Cyclotomic constructions of skew Hadamard difference sets. J. Combin. Theory Ser. A 119(1), 245–256 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Ma, S.L., Ng, W.S.: On non-existence of perfect and nearly perfect sequences. Int. J. Inf. Coding Theory 1(1), 15–38 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Chee, Y.M., Tan, Y., Zhou, Y.: Almost p-Ary Perfect Sequences. In: Carlet, C., Pott, A. (eds.) SETA 2010. LNCS, vol. 6338, pp. 399–415. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  59. 59.
    Kantor, W.M.: Projective planes of type I − 4. Geometriae Dedicata 3, 335–346 (1974)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexander Pott
    • 1
  • Qi Wang
    • 1
  • Yue Zhou
    • 1
  1. 1.Faculty of MathematicsOtto-von-Guericke-University MagdeburgMagdeburgGermany

Personalised recommendations