A New Method for Constructing Small-Bias Spaces from Hermitian Codes

  • Olav Geil
  • Stefano Martin
  • Ryutaroh Matsumoto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7369)


We propose a new method for constructing small-bias spaces through a combination of Hermitian codes. For a class of parameters our multisets are much faster to construct than what can be achieved by use of the traditional algebraic geometric code construction. So, if speed is important, our construction is competitive with all other known constructions in that region. And if speed is not a matter of interest the small-bias spaces of the present paper still perform better than the ones related to norm-trace codes reported in [12].


Small-bias space balanced code Gröbner basis Hermitian code 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Goldreich, O., Hastad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables. Random Structures Algorithms 3(3), 289–303 (1992)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ben-Aroya, A., Ta-Shma, A.: Constructing small-bias sets from algebraic-geometric codes. In: FOCS 2009, pp. 191–197 (2009)Google Scholar
  3. 3.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer (1997)Google Scholar
  4. 4.
    Fitzgerald, J., Lax, R.F.: Decoding Affine Variety Codes Using Gröbner Bases. Des. Codes Cryptography 13, 147–158 (1998)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Garcia, A., Stichtenoth, H.: On the asymptotic behaviour of some towers of function fields over finite fields. J. Number Theory 61, 248–273 (1996)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Geil, O.: On codes from norm-trace curves. Finite Fields and their Applications 9, 351–371 (2003)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Geil, O., Høholdt, T.: Footprints or Generalized Bezout’s Theorem. IEEE Trans. Inform. Theory 46, 635–641 (2000)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Geil, O., Høholdt, T.: On Hyperbolic Type Codes. In: Proceedings of 2003 IEEE International Symposium on Inf. Theory, Yokohama, p. 331 (2003)Google Scholar
  9. 9.
    Høholdt, T.: On (or in) Dick Blahut’s ’footprint’. In: Vardy, A. (ed.) Codes, Curves and Signals, pp. 3–9. Kluwer Academic, Norwell (1998)CrossRefGoogle Scholar
  10. 10.
    Høholdt, T., van Lint, J., Pellikaan, R.: Algebraic Geometry Codes. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, vol. 1, ch. 10, pp. 871–961. Elsevier, Amsterdam (1998)Google Scholar
  11. 11.
    Miura, S., Kamiya, N.: Geometric-Goppa codes on some maximal curves and their minimum distance. In: Proc. of 1993 IEEE Inf. Th. Workshop, Susonon-shi, Shizuoka, Japan, June 4-8, pp. 85–86 (1993)Google Scholar
  12. 12.
    Matthews, G.L., Peachey, J.: Small-bias sets from extended norm-trace codes. To appear in Proceedings of Fq10, Contemporary Mathematics. AMSGoogle Scholar
  13. 13.
    Massey, J., Costello, D.J., Justesen, J.: Polynomial Weights and Code Constructions. IEEE Trans. Inf. Theory 19, 101–110 (1973)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Meka, R., Zuckerman, D.: Small-Bias Spaces for Group Products. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 658–672. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Naor, J., Naor, M.: Small-bias probability spaces: eficient construction and applications. SIAM J. Comput. 22, 838–856 (1993)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Shum, K.W., Aleshnikov, I., Vijay Kumar, P., Stichtenoth, H., Deolalikar, V.: A Low-Complexity Algorithm for the Construction of Algebraic-Geometric Codes Better Than the Gilbert-Varshamov Bound. IEEE Trans. Inform. Theory 47, 2225–2241 (2001)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Vazirani, U.V.: Randomness, adversaries, and computation, Ph.D. thesis, EECS, UC Berkeley (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olav Geil
    • 1
  • Stefano Martin
    • 1
  • Ryutaroh Matsumoto
    • 1
    • 2
  1. 1.Department of Mathematical SciencesAalborg UniversityDenmark
  2. 2.Department of Communications and Integrated SystemsTokyo Institute of TechnologyJapan

Personalised recommendations