Square Root Algorithms for the Number Field Sieve

  • Emmanuel Thomé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7369)


We review several methods for the square root step of the Number Field Sieve, and present an original one, based on the Chinese Remainder Theorem.


Prime Ideal Space Complexity Galois Group Ideal Factorization Algebraic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brent, R.P.: Multiple-precision zero-finding methods and the complexity of elementary function evaluation. In: Traub, J.F. (ed.) Analytic Computational Complexity, pp. 151–176. Academic Press, New York (1975),
  2. 2.
    Brent, R., Zimmermann, P.: Modern Computer Arithmetic. Cambridge Monographs on Applied and Computational Mathematics, vol. 18. Cambridge University Press (2010)Google Scholar
  3. 3.
    Buhler, J.P., Lenstra, A.K., Pollard, J.M.: Factoring integers with the number field sieve. In: Lenstra, A.K., Lenstra Jr., H.W. (eds.) The Development of the Number Field Sieve. Lecture Notes in Math., vol. 1554, pp. 50–94. Springer (1993)Google Scholar
  4. 4.
    Cohen, H.: A course in algorithmic algebraic number theory. Grad. Texts in Math., vol. 138. Springer (1993)Google Scholar
  5. 5.
    Couveignes, J.-M.: Computing a square root for the number field sieve. In: Lenstra, A.K., Lenstra Jr., H.W. (eds.) The Development of the Number Field Sieve. Lecture Notes in Math., vol. 1554, pp. 95–102. Springer (1993)Google Scholar
  6. 6.
    Enge, A., Sutherland, A.V.: Class Invariants by the CRT Method. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS-IX. LNCS, vol. 6197, pp. 142–156. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    von zur Gathen, J., Gerhard, J.: Modern computer algebra. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  8. 8.
    Gaudry, P., Kruppa, A., Morain, F., Muller, L., Thomé, E., Zimmermann, P.: cado-nfs, An Implementation of the Number Field Sieve Algorithm (2011),, Release 1.1
  9. 9.
    Howgrave-Graham, N., Joux, A.: New Generic Algorithms for Hard Knapsacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Joux, A., Naccache, D., Thomé, E.: When e-th Roots Become Easier Than Factoring. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 13–28. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry, P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A., Zimmermann, P.: Factorization of a 768-Bit RSA Modulus. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010)Google Scholar
  12. 12.
    Lenstra Jr., H.W., Stevenhagen, P.: Chebotarëv and his density theorem. Math. Intelligencer 18(2), 26–37 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Monico, C.: ggnfs, A Number Field Sieve Implementation (2004-2005),, Release 0.77
  14. 14.
    Montgomery, P.L.: Square roots of products of algebraic numbers. In: Gautschi, W. (ed.) Mathematics of Computation 1943-1993: a Half-Century of Computational Mathematics. Proc. Sympos. Appl. Math., vol. 48, pp. 567–571. Amer. Math. Soc. (1994)Google Scholar
  15. 15.
    Montgomery, P.L.: Square roots of products of algebraic numbers (1997), unpublished draft, significantly different from published version [14] (May 16, 1997)Google Scholar
  16. 16.
    Nguyên, P.Q.: A Montgomery-like Square Root for the Number Field Sieve. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 151–168. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Papadopoulos, J.: msieve, A Library for Factoring Large Integers – release 1.50 (2004),, Release 1.50
  18. 18.
    Sutherland, A.V.: Accelerating the CM method (2012) (preprint),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Emmanuel Thomé
    • 1
  1. 1.INRIA NancyVillers-lès-NancyFrance

Personalised recommendations