Advertisement

Finding Optimal Formulae for Bilinear Maps

  • Razvan Barbulescu
  • Jérémie Detrey
  • Nicolas Estibals
  • Paul Zimmermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7369)

Abstract

We describe a unified framework to search for optimal formulae evaluating bilinear or quadratic maps. This framework applies to polynomial multiplication and squaring, finite field arithmetic, matrix multiplication, etc. We then propose a new algorithm to solve problems in this unified framework. With an implementation of this algorithm, we prove the optimality of various published upper bounds, and find improved upper bounds.

Keywords

optimal algorithms polynomial multiplication and squaring finite field arithmetic tensor rank bilinear map bilinear rank 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht, M.R.: The M4RIE library for dense linear algebra over small fields with even characteristic (2011) (preprint), http://arxiv.org/abs/1111.6900
  2. 2.
    Artin, M.: Algebra. Prentice-Hall, Inc. (1991)Google Scholar
  3. 3.
    Bläser, M.: On the complexity of the multiplication of matrices of small formats. Journal of Complexity 19, 43–60 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bürgisser, P., Clausen, M., Shokrollahi, M.: Algebraic complexity theory, vol. 315. Springer (1997)Google Scholar
  5. 5.
    Cenk, M., Özbudak, F.: Improved polynomial multiplication formulas over \({\mathbb F}_2\) using Chinese remainder theorem. IEEE Trans. Comput. 58(4), 572–576 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cenk, M., Özbudak, F.: Efficient Multiplication in \({\mathbb F}_{3^{\ell m}}\), m ≥ 1 and 5 ≤ ℓ ≤ 18. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 406–414. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Cenk, M., Özbudak, F.: On multiplication in finite fields. J. Complexity 26, 172–186 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cenk, M., Özbudak, F.: Multiplication of polynomials modulo x n. Theoret. Comput. Sci. 412, 3451–3462 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Chung, J., Hasan, M.A.: Asymmetric squaring formulae. In: Kornerup, P., Muller, J.M. (eds.) Proc. ARITH 18, pp. 113–122 (2007)Google Scholar
  10. 10.
    Comon, P., Golub, G., Lim, L., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. & Appl. 30(3), 1254–1279 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Courtois, N.T., Bard, G.V., Hulme, D.: A new general-purpose method to multiply 3 ×3 matrices using only 23 multiplications (2011) (preprint), http://arxiv.org/abs/1108.2830
  12. 12.
    Fan, H., Hasan, A.: Comments on five, six, and seven-term Karatsuba-like formulae. IEEE Trans. Comput. 56(5), 716–717 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hanrot, G., Quercia, M., Zimmermann, P.: The middle product algorithm, I. Speeding up the division and square root of power series. Appl. Algebra Engrg. Comm. Comput. 14(6), 415–438 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hastad, J.: Tensor rank is NP-complete. J. Algorithms 11(4), 644–654 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Karatsuba, A.A., Ofman, Y.: Multiplication of multi-digit numbers on automata. Doklady Akad. Nauk SSSR 145(2), 293–294 (1962) (in Russian); translation in Soviet Physics-Doklady 7, 595–596 (1963) Google Scholar
  16. 16.
    Montgomery, P.: Five, six, and seven-term Karatsuba-like formulae. IEEE Trans. Comput. 54(3), 362–369 (2005)zbMATHCrossRefGoogle Scholar
  17. 17.
    Mulders, T.: On short multiplications and divisions. Appl. Algebra Engrg. Comm. Comput. 11(1), 69–88 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Oseledets, I.: Optimal Karatsuba-like formulae for certain bilinear forms in GF(2). Linear Algebra and its Applications 429, 2052–2066 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13(4), 354–356 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Toom, A.: The complexity of a scheme of functional elements realizing the multiplication of integers. Soviet Mathematics Doklady 3, 714–716 (1963)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Razvan Barbulescu
    • 1
  • Jérémie Detrey
    • 1
  • Nicolas Estibals
    • 1
  • Paul Zimmermann
    • 1
  1. 1.CARAMEL project-teamLORIA, Université de Lorraine / INRIA / CNRSVandoeuvre-lés-Nancy CedexFrance

Personalised recommendations