Coupling Between Transcription and Alternative Splicing

  • Ignacio E. Schor
  • Luciana I. Gómez Acuña
  • Alberto R. KornblihttEmail author
Part of the Cancer Treatment and Research book series (CTAR, volume 158)


The scenario of alternative splicing regulation is far more complex than the classical picture of a pre-mRNA being processed post-transcriptionally in more than one way. Introns are efficiently removed while transcripts are still being synthesized, supporting the idea of a co-transcriptional regulation of alternative splicing. Evidence of a functional coupling between splicing and transcription has recently emerged as it was observed that properties of one process may affect the outcome of the other. Co-transcriptionality is thought to improve splicing efficiency and kinetics by directing the nascent pre-mRNA into proper spliceosome assembly and favoring splicing factor recruitment. Two models have been proposed to explain the coupling of transcription and alternative splicing: in the recruitment model, promoters and pol II status affect the recruitment to the transcribing gene of splicing factors or bifunctional factors acting on both transcription and splicing; in the kinetic model, differences in the elongation rate of pol II would determine the timing in which splicing sites are presented, and thus the outcome of alternative splicing decisions. In the later model, chromatin structure has emerged as a key regulator. Although definitive evidence for transcriptionally coupled alternative splicing alterations in tumor development or cancer pathogenesis is still missing, many alternative splicing events altered in cancer might be subject to transcription-splicing coupling regulation.


Alternative splicing Co-transcriptional splicing Transcription-splicing coupling RNA polymerase II-CTD Kinetic model Chromatin 



We thank the members of our lab and Anabella Srebrow for criticisms and helpful discussions. This work was supported by grants from the Fundación Antorchas, the Agencia Nacional de Promoción de Ciencia y Tecnología of Argentina, the European Union Network of Excellence on Alternative Splicing (EURASNET), and the University of Buenos Aires. I.E.S. and L.G.A. are recipients of fellowships from the Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina (CONICET). A.R.K. is a Howard Hughes Medical Institute international research scholar and a career investigator of the CONICET.


  1. 1.
    Srebrow A, Kornblihtt AR (2006) The connection between splicing and cancer. J Cell Sci 119(13):2635–2641PubMedCrossRefGoogle Scholar
  2. 2.
    Muñoz MJ, Perez Santángelo MS, Paronetto MP, de la Mata M, Pelisch F, Boireau S, Glover-Cutter K, Ben-Dov C, Blaustein M, Lozano JJ, Bird G, Bentley D, Bertrand E, Kornblihtt AR (2009) DNA damage regulates alternative splicing through inhibition of RNA Polymerase II elongation. Cell 137:708–720Google Scholar
  3. 3.
    Berget SM (1995) Exon recognition in vertebrate splicing. J Biol Chem 270(6):2411–2414PubMedGoogle Scholar
  4. 4.
    Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(27):470–476PubMedCrossRefGoogle Scholar
  5. 5.
    Pan Q, Shai o, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high throughput sequencing. Nat Genet 40(12):1413–1415PubMedCrossRefGoogle Scholar
  6. 6.
    Ermakova EO, Nurtdinov RN, Gelfand MS (2006) Fast rate of evolution in alternative spliced coding regions of mammalian genes. BMC Genomics 7:84–93PubMedCrossRefGoogle Scholar
  7. 7.
    Smith CW, Valcárcel J (2000) Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci 25(8):381–388Google Scholar
  8. 8.
    Cáceres JF, Kornblihtt AR (2002) Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet 18:186–193PubMedCrossRefGoogle Scholar
  9. 9.
    Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336PubMedCrossRefGoogle Scholar
  10. 10.
    Sharp PA (1994) Split genes and RNA splicing. Cell 77(6):805–815PubMedCrossRefGoogle Scholar
  11. 11.
    Kornblihtt AR, Pesce CG, Alonso CR et al (1996) The fibronectin gene as a model for splicing and transcription studies. FASEB J 10(2):248–257PubMedGoogle Scholar
  12. 12.
    Fededa JP, Petrillo E, Gelfand MS et al (2005) A polar mechanism coordinates different regions of alternative splicing within a single gene. Mol Cell 19(3):393–404PubMedCrossRefGoogle Scholar
  13. 13.
    Lenasi T, Peterlin BM, Dovc P (2006) Distal regulation of alternative splicing by splicing enhancer in equine beta-casein intron 1. RNA 12(3):498–507PubMedCrossRefGoogle Scholar
  14. 14.
    Romano M, Marcucci R, Baralle FE (2001) Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene. Nucleic Acids Res 29(4):886–894PubMedCrossRefGoogle Scholar
  15. 15.
    Bentley D (2002) The mRNA assembly line: transcription and processing machines in the same factory. Curr Opin Cell Biol 14(3):336–342PubMedCrossRefGoogle Scholar
  16. 16.
    Bentley DL (2005) Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol 17(3):251–256PubMedCrossRefGoogle Scholar
  17. 17.
    Maniatis T, Reed R (2002) An extensive network of coupling among gene expression machines. Nature 416(6880):499–506PubMedCrossRefGoogle Scholar
  18. 18.
    Kornblihtt AR (2005) Promoter usage and alternative splicing. Curr Opin Cell Biol 17(3):262–268PubMedCrossRefGoogle Scholar
  19. 19.
    Zorio DA, Bentley DL (2004) The link between mRNA processing and transcription: communication works both ways. Exp Cell Res 296(1):91–97PubMedCrossRefGoogle Scholar
  20. 20.
    Neugebauer KM (2002) On the importance of being co-transcriptional. J Cell Sci 115(Pt 20):3865–3871PubMedCrossRefGoogle Scholar
  21. 21.
    Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 108(4):501–512PubMedCrossRefGoogle Scholar
  22. 22.
    Beyer AL, Osheim YN (1988) Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev 2(6):754–765PubMedCrossRefGoogle Scholar
  23. 23.
    Tennyson CN, Klamut HJ, Worton RG (1995) The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 9(2):184–190PubMedCrossRefGoogle Scholar
  24. 24.
    Pandya-Jones A, Black DL (2009) Co-transcriptional splicing of constitutive and alternative exons. RNA 15:1896–1908PubMedCrossRefGoogle Scholar
  25. 25.
    Bauren G, Wieslander L (1994) Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell 76(1):183–192PubMedCrossRefGoogle Scholar
  26. 26.
    de la Mata M, Lafaille C, Kornblihtt AR (2010) First come, first served revisited: Factors affecting the same alternative splicing events have different effects on the relative rates of intron removal. RNA 16:904–912PubMedCrossRefGoogle Scholar
  27. 27.
    Lazarev D, Manley JL (2007) Concurrent splicing and transcription are not sufficient to enhance splicing efficiency. RNA 13:1546–1557PubMedCrossRefGoogle Scholar
  28. 28.
    Perales R, Bentley D (2009) “Cotranscriptionality”: the transcription elongation complex as a Nexus for nuclear transactions. Mol Cell 36:178–191PubMedCrossRefGoogle Scholar
  29. 29.
    Alexander RD, Innocente SA, Barrass JD, Beggs JD (2010) Splicing-dependent RNA Polymerase pausing in yeast. Mol Cell 40:582–593PubMedCrossRefGoogle Scholar
  30. 30.
    Lin S, Coutinho-Mansfield G, Wang D, Pandit S, Fu XD (2008) The splicing factor SC35 has an active role in transcriptional elongation. Nat Struct Mol Biol 15(8):819–826PubMedCrossRefGoogle Scholar
  31. 31.
    Carrillo Oesterreich F, Preibisch S, Neugebauer KM (2010) Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol Cell 40:571–581Google Scholar
  32. 32.
    Smale ST, Tjian R (1985) Transcription of herpes simplex virus tk sequences under the control of wild-type and mutant human RNA polymerase I promoters. Mol Cell Biol 5(2):352–362PubMedGoogle Scholar
  33. 33.
    Sisodia SS, Sollner-Webb B, Cleveland DW (1987) Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation. Mol Cell Biol 7(10):3602–3612PubMedGoogle Scholar
  34. 34.
    McCracken S, Rosonina E, Fong N et al (1998) Role of RNA polymerase II carboxy-terminal domain in coordinating transcription with RNA processing. Cold Spring Harb Symp Quant Biol 63:301–309PubMedCrossRefGoogle Scholar
  35. 35.
    Dower K, Rosbash M (2002) T7 RNA polymerase-directed transcripts are processed in yeast and link 3′ end formation to mRNA nuclear export. RNA 8(5):686–697PubMedCrossRefGoogle Scholar
  36. 36.
    Hicks MJ, Yang CR, Kotlajich MV, Hertel KJ (2006) Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns. PLoS Biol 4(6):e147PubMedCrossRefGoogle Scholar
  37. 37.
    Das R, Dufu K, Romney B, Feldt M, Elenko M, Reed R (2006) Functional coupling of RNAP II transcription to spliceosome assembly. Genes Dev 20(9):1100–1109PubMedCrossRefGoogle Scholar
  38. 38.
    Das R, Yu J, Zhang Z, Gygi MP, Krainer AR, Gygi SP, Reed R (2007) SR proteins function in coupling RNAP II trancription to pre-mRNA splicing. Mol Cell 26:867–881PubMedCrossRefGoogle Scholar
  39. 39.
    Misteli T, Spector DL (1999) RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol Cell 3(6):697–705PubMedCrossRefGoogle Scholar
  40. 40.
    McCracken S, Fong N, Yankulov K et al (1997) The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385(6614):357–361PubMedCrossRefGoogle Scholar
  41. 41.
    Zeng C, Berget SM (2000) Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing. Mol Cell Biol 20(21):8290–8301PubMedCrossRefGoogle Scholar
  42. 42.
    Hirose Y, Tacke R, Manley JL (1999) Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev 13(10):1234–1239PubMedCrossRefGoogle Scholar
  43. 43.
    Dye MJ, Gromak N, Proudfoot NJ (2006) Exon tethering in transcription by RNA polymerase II. Mol Cell 21(6):849–859PubMedCrossRefGoogle Scholar
  44. 44.
    Sims RJ 3rd, Belotserkovskaya R, Reinberg D (2004) Elongation by RNA polymerase II: the short and long of it. Genes Dev 18(20):2437–2468PubMedCrossRefGoogle Scholar
  45. 45.
    Saunders A, Core LJ, Lis JT (2006) Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 7(8):557–567PubMedCrossRefGoogle Scholar
  46. 46.
    Muñoz MJ, de la Mata M, Kornblihtt AR (2010) The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends Biochem Sci 35:497–504PubMedCrossRefGoogle Scholar
  47. 47.
    Xu YX, Hirose Y, Zhou XZ, Lu KP, Manley JL (2003) Pin1 modulates the structure and function of human RNA polymerase II. Genes Dev 17(22):2765–2776PubMedCrossRefGoogle Scholar
  48. 48.
    Bird G, Zorio DA, Bentley DL (2004) RNA Polymerase II Carboxy-Terminal domain phosphorylation is required for Cotranscriptional Pre-mRNA Splicing and 3′-End formation. Mol Cell Biol 24(20):8963–8969PubMedCrossRefGoogle Scholar
  49. 49.
    de la Mata M, Kornblihtt AR (2006) Pol II CTD mediates SRp20 regulation of alternative splicing. Nat Struct Mol Biol 13(11):973–980PubMedCrossRefGoogle Scholar
  50. 50.
    Laurencikiene J, Kallman AM, Fong N, Bentley DL, Ohman M (2006) RNA editing and alternative splicing: the importance of co-transcriptional coordination. EMBO Rep 7(3):303–307PubMedGoogle Scholar
  51. 51.
    Rosonina E, Blencowe BJ (2004) Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3′-end cleavage. RNA 10(4):581–589PubMedCrossRefGoogle Scholar
  52. 52.
    Sims RJ III, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P, Manley JL, Reinberg D (2007) Recognition of Trimethylated Histone H3 Lysine 4 facilitates the recruitment of transcription postinitiation factors and Pre-mRNA splicing. Mol Cell 28:665–676PubMedCrossRefGoogle Scholar
  53. 53.
    Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T (2010) Regulation of alternative splicing by histone modifications. Science 327:996–1000PubMedCrossRefGoogle Scholar
  54. 54.
    Edmunds JW, Mahadevan LC, Clayton AL (2008) Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 27:406–420PubMedCrossRefGoogle Scholar
  55. 55.
    Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V, Richards DP, Beattie BK, Emili A, Boone C, Shilatifard A, Buratowski S, Greenblatt J (2003) Methylation of Histone H3 by Set2 in Saccharomyces cerevisiae Is Linked to Transcriptional Elongation by RNA Polymerase II. Mol Cell Biol 23(12):4207–4218PubMedCrossRefGoogle Scholar
  56. 56.
    Cramer P, Pesce CG, Baralle FE, Kornblihtt AR (1997) Functional association between promoter structure and transcript alternative splicing. Proc Natl Acad Sci U S A 94(21):11456–11460PubMedCrossRefGoogle Scholar
  57. 57.
    Cramer P, Caceres JF, Cazalla D et al (1999) Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol Cell 4(2):251–258PubMedCrossRefGoogle Scholar
  58. 58.
    Auboeuf D, Honig A, Berget SM, O’Malley BW (2002) Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science 298(5592):416–419PubMedCrossRefGoogle Scholar
  59. 59.
    Pagani F, Stuani C, Zuccato E, Kornblihtt AR, Baralle FE (2003) Promoter architecture modulates CFTR exon 9 skipping. J Biol Chem 278(3):1511–1517PubMedCrossRefGoogle Scholar
  60. 60.
    Robson-Dixon ND, Garcia-Blanco MA (2004) MAZ elements alter transcription elongation and silencing of the fibroblast growth factor receptor 2 exon IIIb. J Biol Chem 279(28):29075–29084PubMedCrossRefGoogle Scholar
  61. 61.
    Nogues G, Kadener S, Cramer P, Bentley D, Kornblihtt AR (2002) Transcriptional activators differ in their abilities to control alternative splicing. J Biol Chem 277(45):43110–43114PubMedCrossRefGoogle Scholar
  62. 62.
    Rosonina E, Bakowski MA, McCracken S, Blencowe BJ (2003) Transcriptional activators control splicing and 3′-end cleavage levels. J Biol Chem 278(44):43034–43040PubMedCrossRefGoogle Scholar
  63. 63.
    Auboeuf D, Dowhan DH, Kang YK et al (2004) Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes. Proc Natl Acad Sci U S A 101(8):2270–2274PubMedCrossRefGoogle Scholar
  64. 64.
    Auboeuf D, Dowhan DH, Li X et al (2004) CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing. Mol Cell Biol 24(1):442–453PubMedCrossRefGoogle Scholar
  65. 65.
    Kotovic KM, Lockshon D, Boric L, Neugebauer KM (2003) Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast. Mol Cell Biol 23(16):5768–5779PubMedCrossRefGoogle Scholar
  66. 66.
    Lacadie SA, Rosbash M (2005) Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5′ss base pairing in yeast. Mol Cell 19(1):65–75PubMedCrossRefGoogle Scholar
  67. 67.
    Gornemann J, Kotovic KM, Hujer K, Neugebauer KM (2005) Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol Cell 19(1):53–63PubMedCrossRefGoogle Scholar
  68. 68.
    Listerman I, Sapra AK, Neugebauer KM (2006) Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat Struct Mol Biol 13(9):815–822PubMedCrossRefGoogle Scholar
  69. 69.
    Lai MC, Teh BH, Tarn WY (1999) A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing. J Biol Chem 274(17):11832–11841PubMedCrossRefGoogle Scholar
  70. 70.
    Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM (2000) Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell 6(2):307–316PubMedCrossRefGoogle Scholar
  71. 71.
    Guillouf C, Gallais I, Moreau-Gachelin F (2006) Spi-1/PU.1 oncoprotein affects splicing decisions in a promoter binding-dependent manner. J Biol Chem 281(28):19145–19155PubMedCrossRefGoogle Scholar
  72. 72.
    Davies RC, Calvio C, Bratt E, Larsson SH, Lamond AI, Hastie ND (1998) WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes. Genes Dev 12(20):3217–3225PubMedCrossRefGoogle Scholar
  73. 73.
    Nayler O, Stratling W, Bourquin JP et al (1998) SAF-B protein couples transcription and pre-mRNA splicing to SAR/MAR elements. Nucleic Acids Res 26(15):3542–3549PubMedCrossRefGoogle Scholar
  74. 74.
    Goldstrohm AC, Albrecht TR, Sune C, Bedford MT, Garcia-Blanco MA (2001) The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1. Mol Cell Biol 21(22):7617–7628PubMedCrossRefGoogle Scholar
  75. 75.
    Lin KT, Lu RM, Tarn WY (2004) The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo. Mol Cell Biol 24(20):9176–9185PubMedCrossRefGoogle Scholar
  76. 76.
    Yuryev A, Patturajan M, Litingtung Y et al (1996) The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc Natl Acad Sci U S A 93(14):6975–6980PubMedCrossRefGoogle Scholar
  77. 77.
    Young JI, Hong EP, Castle JC et al (2005) Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci U S A. 102(49):17551–17558PubMedCrossRefGoogle Scholar
  78. 78.
    Millhouse S, Manley JL (2005) The C-terminal domain of RNA polymerase II functions as a phosphorylation-dependent splicing activator in a heterologous protein. Mol Cell Biol 25(2):533–544PubMedCrossRefGoogle Scholar
  79. 79.
    Sato S, Tomomori-Sato C, Parmely TJ et al (2004) A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol Cell 14(5):685–691PubMedCrossRefGoogle Scholar
  80. 80.
    Eperon LP, Graham IR, Griffiths AD, Eperon IC (1988) Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell 54(3):393–401PubMedCrossRefGoogle Scholar
  81. 81.
    Roberts GC, Gooding C, Mak HY, Proudfoot NJ, Smith CW (1998) Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res 26(24):5568–5572PubMedCrossRefGoogle Scholar
  82. 82.
    Kadener S, Cramer P, Nogues G et al (2001) Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing. EMBO J 20(20):5759–5768PubMedCrossRefGoogle Scholar
  83. 83.
    Kadener S, Fededa JP, Rosbash M, Kornblihtt AR (2002) Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation. Proc Natl Acad Sci U S A 99(12):8185–8190PubMedCrossRefGoogle Scholar
  84. 84.
    Nogues G, Munoz MJ, Kornblihtt AR (2003) Influence of polymerase II processivity on alternative splicing depends on splice site strength. J Biol Chem 278(52):52166–52171PubMedCrossRefGoogle Scholar
  85. 85.
    de la Mata M, Alonso CR, Kadener S et al (2003) A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 12(2):525–532PubMedCrossRefGoogle Scholar
  86. 86.
    Howe KJ, Kane CM, Ares M Jr (2003) Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 9(8):993–1006PubMedCrossRefGoogle Scholar
  87. 87.
    Lorincz MC, Dickerson DR, Schmitt M, Groudine M (2004) Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11(11):1068–1075PubMedCrossRefGoogle Scholar
  88. 88.
    Batsche E, Yaniv M, Muchardt C (2006) The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 13(1):22–29PubMedCrossRefGoogle Scholar
  89. 89.
    Kornblihtt AR (2006) Chromatin, transcript elongation and alternative splicing. Nat Struct Mol Biol 13(1):5–7PubMedCrossRefGoogle Scholar
  90. 90.
    Schor IE, Rascovan N, Pelisch F, Alló M, Kornblihtt AR (2009) Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc Natl Acad Sci USA 106(11):4325–4330PubMedCrossRefGoogle Scholar
  91. 91.
    Alló M, Buggiano V, Fededa JP, Petrillo E, Schor I, de la Mata M, Agirre E, Plass M, Eyras E, Elela SA, Klinck R, Chabot B, Kornblihtt AR (2009) Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol 16(7):717–724PubMedCrossRefGoogle Scholar
  92. 92.
    Suzuki K, Juelich T, Lim H, Ishida T, Watanebe T, Cooper DA, Rao S, Kelleher AD (2008) Closed Chromatin architecture Is induced by an RNA Duplex targeting the HIV-1 promoter region. J Biol Chem 283:23353–23363PubMedCrossRefGoogle Scholar
  93. 93.
    Kim DH, Villeneuve LM, Morris KV, Rossi JJ (2006) Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol 13:793–797PubMedCrossRefGoogle Scholar
  94. 94.
    Morris KV, Chan SW, Jacobsen SE, Looney DJ (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305:1289–1292PubMedCrossRefGoogle Scholar
  95. 95.
    Schwartz S, Meshorer E, Ast G (2009) Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 16(9):990–995PubMedCrossRefGoogle Scholar
  96. 96.
    Tilgner H, Nikolaou C, Althammer S, Sammeth M, Beato M, Valcárcel J, Guigó R (2009) Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol 16(9):996–1001PubMedCrossRefGoogle Scholar
  97. 97.
    Kolosinska-Zwierz P, Down T, Latorre I, Liu T, Liu XS, Ahringer J (2009) Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 41(3):376–381CrossRefGoogle Scholar
  98. 98.
    Yang L, Embree LJ, Hickstein DD (2000) TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins. Mol Cell Biol 20(10):3345–3354PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ignacio E. Schor
    • 1
  • Luciana I. Gómez Acuña
    • 1
  • Alberto R. Kornblihtt
    • 1
    Email author
  1. 1.Laboratorio de Fisiologia y Biologia Molecular, Departmento de Fisiologia, Biologia Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations