Equations in the Partial Semigroup of Words with Overlapping Products

  • Mari Huova
  • Juhani Karhumäki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7300)


We consider an overlapping product of words as a partial operation where the product of two words is defined when the former ends with the same letter as the latter starts, and in this case the product is obtained by merging these two occurrences of letters, for example aba ∙ ab = abab. Some basic results on equations of words are established by reducing them to corresponding results of ordinary word equations.


combinatorics on words overlapping product equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, M.H., Lawrence, J.: A proof of Ehrenfeucht’s conjecture. Theoret. Comput. Sci. 41, 121–123 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Büchi, J.R., Senger, S.: Coding in the existential theory of concatenation. Arch. Math. Logik Grundlag. 26, 101–106 (1986/1987)Google Scholar
  3. 3.
    Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 329–438. Springer (1997)Google Scholar
  4. 4.
    Csuhaj-Varjú, E., Petre, I., Vaszil, G.: Self-assembly of strings and languages. Theoret. Comput. Sci. 374, 74–81 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cărăuşu, A., Păun, G.: String intersection and short concatenation. Revue Roumaine de Mathématiques Pures et Appliquées 26, 713–726 (1981)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Domaratzki, M.: Semantic Shuffle on and Deletion Along Trajectories. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 163–174. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Domaratzki, M.: Minimality in Template-Guided Recombination. Information and Computation 207, 1209–1220 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Guba, V.S.: Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems. Mat. Zametki 40, 321–324 (1986) (in Russian)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Harju, T., Karhumäki, J., Plandowski, W.: Independent systems of equations. In: Lothaire, M. (ed.) Algebraic Combinatorics on Words, ch. 13, pp. 443–472. Cambridge University Press (2002)Google Scholar
  10. 10.
    Holzer, M., Jakobi, S.: Chop Operations and Expressions: Descriptional Complexity Considerations. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 264–275. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Ito, M., Lischke, G.: Generalized periodicity and primitivity. Mathematical Logic Quarterly 53, 91–106 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and relations by word equations. J. ACM 47, 483–505 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lothaire, M.: Combinatorics on words. Addison-Wesley (1983)Google Scholar
  14. 14.
    Lyndon, R.C., Schützenberger, M.P.: The equation aM = bNcP in a free group. Michigan Math. J. 9, 289–298 (1962)CrossRefzbMATHGoogle Scholar
  15. 15.
    Makanin, G.S.: The problem of the solvability of equations in a free semigroup. Mat. Sb. (N.S.) 103, 147–236 (1997) (in Russian), English translation in: Math. USSR-Sb. 32, 129–198 (1977)Google Scholar
  16. 16.
    Mateescu, A., Păun, G., Rozenberg, G., Salomaa, A.: Simple splicing systems. Discrete Applied Mathematics 84, 145–162 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mateescu, A., Salomaa, A.: Parallel composition of words with re-entrant symbols. Analele Universităţii Bucureşti Mathematică-Informatică 45, 71–80 (1996)MathSciNetGoogle Scholar
  18. 18.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing, New Computing Paradigms. Springer (1998)Google Scholar
  19. 19.
    Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J. ACM 51, 483–496 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mari Huova
    • 1
  • Juhani Karhumäki
    • 1
  1. 1.Department of Mathematics and TUCSUniversity of TurkuTurkuFinland

Personalised recommendations