Hairpin Lengthening and Shortening of Regular Languages

  • Florin Manea
  • Robert Mercas
  • Victor Mitrana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7300)

Abstract

We consider here two formal operations on words inspired by the DNA biochemistry: hairpin lengthening introduced in [15] and its inverse called hairpin shortening. We study the closure of the class of regular languages under the non-iterated and iterated variants of the two operations. The main results are: although any finite number of applications of the hairpin lengthening to a regular language may lead to non-regular languages, the iterated hairpin lengthening of a regular language is always regular. As far as the hairpin shortening operation is concerned, the class of regular languages is closed under bounded and unbounded iterated hairpin shortening.

Keywords

Regular Language Iterate Version Input Word Formal Operation Iterate Variant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bottoni, P., Labella, A., Manca, V., Mitrana, V.: Superposition based on watson-crick-like complementarity. Theory of Computing Systems 39(4), 503–524 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Castellanos, J., Mitrana, V.: Some remarks on hairpin and loop languages. In: Words, Semigroups, and Transductions 2001, pp. 47–58 (2001)Google Scholar
  3. 3.
    Cheptea, D., Martín-Vide, C., Mitrana, V.: A new operation on words suggested by dna biochemistry: Hairpin completion. Transgressive Computing, 216–228 (2006)Google Scholar
  4. 4.
    Deaton, R., Murphy, R., Garzon, M., Franceschetti, D., Stevens Jr., S.: Good encodings for DNA-based solutions to combinatorial problems. In: Proceedings of the Second Annual Meeting on DNA Based Computer. DIMACS, vol. 44, pp. 247–259 (1996)Google Scholar
  5. 5.
    Diekert, V., Kopecki, S.: Complexity Results and the Growths of Hairpin Completions of Regular Languages (Extended Abstract). In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 105–114. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Diekert, V., Kopecki, S.: Language theoretical properties of hairpin formations. Theoretical Computer Science 429, 65–73 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Diekert, V., Kopecki, S., Mitrana, V.: On the Hairpin Completion of Regular Languages. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 170–184. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Garzon, M., Deaton, R., Nino, L., Stevens, E., Wittner, M.: Encoding genomes for DNA computing. In: Koza, J., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D., Garzon, M., Goldberg, D., Iba, H., Riolo, R. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, pp. 684–690. Morgan Kaufmann, Madison (1998)Google Scholar
  9. 9.
    Ito, M., Leupold, P., Manea, F., Mitrana, V.: Bounded hairpin completion. Information and Computation 209(3), 471–485 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kari, L., Konstantinidis, S., Sosík, P., Thierrin, G.: On Hairpin-Free Words and Languages. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 296–307. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Kari, L., Losseva, E., Konstantinidis, S., Sosík, P., Thierrin, G.: A formal language analysis of DNA hairpin structures. Fundam. Inform. 71(4), 453–475 (2006)MathSciNetMATHGoogle Scholar
  12. 12.
    Kopecki, S.: On iterated hairpin completion. Theoretical Computer Science 412(29), 3629–3638 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Manea, F.: A series of algorithmic results related to the iterated hairpin completion. Theoretical Computer Science 411(48), 4162–4178 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Manea, F., Martín-Vide, C., Mitrana, V.: On some algorithmic problems regarding the hairpin completion. Discrete Applied Mathematics 157(9), 2143–2152 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Manea, F., Martín-Vide, C., Mitrana, V.: Hairpin Lengthening. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 296–306. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Manea, F., Mitrana, V.: Hairpin Completion Versus Hairpin Reduction. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 532–541. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Manea, F., Mitrana, V., Yokomori, T.: Two complementary operations inspired by the DNA hairpin formation: Completion and reduction. Theoretical Computer Science 410(4-5), 417–425 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Manea, F., Martín-Vide, C., Mitrana, V.: Hairpin lengthening: Language theoretic and algorithmic results. Journal of Logic and Compuation (to appear, 2012)Google Scholar
  19. 19.
    Păun, G., Rozenberg, G., Yokomori, T.: Hairpin languages. International Journal of Foundations of Computer Science 12, 837–847 (2001)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Heidelberg (1997)MATHGoogle Scholar
  21. 21.
    Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., Hagiya, M.: Molecular computation by dna hairpin formation. Science 288(5469), 1223–1226 (2000)CrossRefGoogle Scholar
  22. 22.
    Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S.V.: DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18(22), 6531–6535 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Florin Manea
    • 1
  • Robert Mercas
    • 2
  • Victor Mitrana
    • 3
  1. 1.Institut für InformatikChristian-Albrechts-Universität zu KielKielGermany
  2. 2.Facultät für InformatikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  3. 3.Department of Organization and Structure of InformationUniversity School of Informatics, Polytechnic University of MadridMadridSpain

Personalised recommendations