Advertisement

Distributed Geometric Distance Estimation in Ad Hoc Networks

  • Sabrina Merkel
  • Sanaz Mostaghim
  • Hartmut Schmeck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7363)

Abstract

Distributed localization algorithms for nodes in ad hoc networks are essential for many applications. A major task when localizing nodes is to accurately estimate distances. So far, distance estimation is often based on counting the minimum number of nodes on the shortest routing path (hop count) and presuming a fixed width for one hop. This is prone to error as the length of one hop can vary significantly. In this paper, a distance estimation method is proposed, which relies on the number of shared communication neighbors and applies geometric properties to the network structure. It is shown that the geometric approach provides reliable estimates for the distance between any two adjacent nodes in a network. Experiments reveal that the estimation has less relative percentage error compared to a hop based algorithm in networks with different node distributions.

Keywords

Ad Hoc networks localization distance estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A., Estrin, D.: Habitat monitoring with sensor networks. Communications of the ACM 47(6), 34–40 (2004)CrossRefGoogle Scholar
  2. 2.
    Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., Welsh, M.: Fidelity and yield in a volcano monitoring sensor network. In: Proceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI 2006), pp. 381–396. USENIX Association (2006)Google Scholar
  3. 3.
    Cui, J.H., Kong, J., Gerla, M., Zhou, S.: The challenges of building mobile underwater wireless networks for aquatic applications. IEEE Network 20(3), 12–18 (2006)CrossRefGoogle Scholar
  4. 4.
    Maihofer, C.: A survey of geocast routing protocols. IEEE Communications Surveys Tutorials 6(2), 32–42 (2004)CrossRefGoogle Scholar
  5. 5.
    Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., Morris, R.: A scalable location service for geographic ad hoc routing. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking (MobiCom 2000), pp. 120–130. ACM (2000)Google Scholar
  6. 6.
    Amouris, K.N., Papavassiliou, S., Li, M.: A position-based multi-zone routing protocol for wide area mobile ad-hoc networks. In: Proceedings of the 49th IEEE Conference on Vehicular Technology, vol. 2, pp. 1365–1369. IEEE (1999)Google Scholar
  7. 7.
    Navas, J.C., Imielinski, T.: GeoCast - Geographic Addressing and Routing. In: Proceedings of the 3rd Annual ACM/IEEE International Conference on Mobile Computing and Networking MobiCom 1997, pp. 66–76. ACM (1997)Google Scholar
  8. 8.
    Liao, W., Tseng, Y., Sheu, J.: GRID: a fully location-aware routing protocol for mobile ad hoc networks. Telecommunication Systems 18(1-3), 37–60 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Gehrke, J., Madden, S.: Query processing in sensor networks. IEEE Pervasive Computing 3(1), 46–55 (2004)CrossRefGoogle Scholar
  10. 10.
    Coore, D.: Botanical Computing: A Developmental Approach to Generating Interconnect Topologies on an Amorphous Computer. PhD thesis, MIT Department of Electrical Engineering and Computer Science (1999)Google Scholar
  11. 11.
    Nagpal, R.: Programmable Self-Assembly: Constructing Global Shape using Biologically-inspired Local Interactions and Origami Mathematics. PhD thesis, MIT Department of Electrical Engineering and Computer Science (2001)Google Scholar
  12. 12.
    Bachrach, J., Taylor, C.: Localization in sensor networks. In: Handbook of Sensor Networks, pp. 277–310. John Wiley & Sons, Inc. (2005)Google Scholar
  13. 13.
    Allen, M., Baydere, S., Gaura, E., Kucuk, G.: Evaluation of localization algorithms. In: Mao, G., Fidan, B. (eds.) Localization Algorithms and Strategies for Wireless Sensor Networks. IGI Global (2009)Google Scholar
  14. 14.
    Savarese, C., Rabaey, J.M., Langendoen, K.: Robust positioning algorithms for distributed Ad-Hoc wireless sensor networks. In: Proceedings of the General Track of the Annual Conference on USENIX Annual Technical Conference, pp. 317–327. USENIX Association (2002)Google Scholar
  15. 15.
    Nagpal, R., Shrobe, H., Bachrach, J.: Organizing a Global Coordinate System from Local Information on an Ad Hoc Sensor Network. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 333–348. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Coore, D.: Establishing a coordinate system on an amorphous computer. MIT/LCS/TR MIT/LCS/TR-737 (1998)Google Scholar
  17. 17.
    Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications 7(5), 28–34 (2000)CrossRefGoogle Scholar
  18. 18.
    Bulusu, N., Bychkovskiy, V., Estrin, D., Heidemann, J.: Scalable, ad hoc deployable, rf-based localization. In: Proceedings of the Grace Hopper Celebration of Women in Computing. Institute for Women and Technology (2002)Google Scholar
  19. 19.
    Simic, S., Sastry, S.S.: Distributed localization in wireless ad hoc networks. Technical Report UCB/ERL M02/26, EECS Department, University of California, Berkeley (2002)Google Scholar
  20. 20.
    Savvides, A., Han, C.C., Strivastava, M.B.: Dynamic fine-grained localization in Ad-hoc networks of sensors. In: Proceedings of the 7th Annual International Conference on Mobile Computing and Networking (MobiCom 2001), pp. 166–179. ACM (2001)Google Scholar
  21. 21.
    Niculescu, D., Nath, B.: Ad hoc positioning system (APS). In: Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM 2001, vol. 5, pp. 2926–2931. IEEE (2001)Google Scholar
  22. 22.
    Hightower, J., Borriello, G., Want, R.: SpotON: an indoor 3D location sensing technology based on RF signal strength. Techreport 2000-02-02, University of Washington (2000)Google Scholar
  23. 23.
    Rappaport, T.S.: Wireless Communications: Principles and Practice, 2nd edn. Prentice-Hall (2002)Google Scholar
  24. 24.
    Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and tracking system. In: Proceedings of the 19th Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE INFOCOM 2000), pp. 775–784. IEEE (2000)Google Scholar
  25. 25.
    Werb, J., Lanzl, C.: Designing a positioning system for finding things and people indoors. IEEE Spectrum 35(9), 71–78 (1998)CrossRefGoogle Scholar
  26. 26.
    Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking (MobiCom 2000), pp. 32–43. ACM (2000)Google Scholar
  27. 27.
    Niculescu, D., Nath, B.: Dv based positioning in ad hoc networks. Telecommunication Systems 22, 267–280 (2003)CrossRefGoogle Scholar
  28. 28.
    Savvides, A., Park, H., Srivastava, M.B.: The n-hop multilateration primitive for node localization problems. Mobile Networks and Applications 8(4), 443–451 (2003)CrossRefGoogle Scholar
  29. 29.
    Nagpal, R.: Organizing a global coordinate system from local information on an amorphous computer. MIT A.I. Laboratory (A.I. Memo No. 1666, MIT) (1999)Google Scholar
  30. 30.
    Wong, S.Y., Lim, J.G., Rao, S.V., Seah, W.K.G.: Density-aware hop-count localization (DHL) in wireless sensor networks with variable density. In: Proceedings of 2005 IEEE Wireless Communications and Networking Conference, vol. 3, pp. 1848–1853. IEEE (2005)Google Scholar
  31. 31.
    Liu, Q., Pruteanu, A., Dulman, S.: GDE: a distributed gradient-based algorithm for distance estimation in large-scale networks. In: Proceedings of the 14th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM 2011, pp. 151–158. ACM Press (2011)Google Scholar
  32. 32.
    Buschmann, C., Hellbrück, H., Fischer, S., Kröller, A., Fekete, S.P.: Radio Propagation-Aware Distance Estimation Based on Neighborhood Comparison. In: Langendoen, K.G., Voigt, T. (eds.) EWSN 2007. LNCS, vol. 4373, pp. 325–340. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Villafuerte, F.L., Terfloth, K., Schiller, J.: Using network density as a new parameter to estimate distance. In: Proceedings of the 7th International Conference on Networking, ICN 2008, pp. 30–35. IEEE Computer Society (2008)Google Scholar
  34. 34.
    Huang, B., Yu, C., Anderson, B., Mao, G.: Connectivity-Based distance estimation in wireless sensor networks. In: Proceedings of the 2010 Global Telecommunications Conference, pp. 1–5. IEEE Computer Society (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sabrina Merkel
    • 1
  • Sanaz Mostaghim
    • 1
  • Hartmut Schmeck
    • 1
  1. 1.Institute AIFBKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations