On Message Complexity of Extrema Propagation Techniques

  • Jacek Cichoń
  • Jakub Lemiesz
  • Marcin Zawada
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7363)

Abstract

In this paper we discuss the message complexity of some variants of the Extrema Propagation techniques in wireless networks. We show that the average message complexity, counted as the number of messages sent by each given node, is \(\mathrm{O}\left(\log n\right)\), where n denotes the size of the network.

We indicate the connection between our problem and the well known and deeply studied problem of the number of records in a random permutation. We generalize this problem onto an arbitrary simple and locally finite graphs, prove some basic theorems and find message complexity for some classical graphs such us lines, circles, grids and trees.

Keywords

Independent Random Variable Line Graph Classical Graph Standard Normal Variable Message Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baquero, C., Almeida, P.S., Menezes, R.: Fast estimation of aggregates in unstructured networks. In: Proceedings of the 2009 Fifth International Conference on Autonomic and Autonomous Systems, pp. 88–93 (2009), http://gsd.di.uminho.pt/members/cbm/ps/IEEEfastFinalICAS2009.pdf
  2. 2.
    Mosk-Aoyama, D., Shah, D.: Computing separable functions via gossip. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing, PODC 2006, pp. 113–122 (2006)Google Scholar
  3. 3.
    Cichoń, J., Lemiesz, J., Zawada, M.: On Cardinality Estimation Protocols for Wireless Sensor Networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW 2011. LNCS, vol. 6811, pp. 322–331. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Cichoń, J., Lemiesz, J., Szpankowski, W., Zawada, M.: Two-phase cardinality estimation protocols for sensor networks with provable precision. In: IEEE WCNC 2012 Conference Proceeding, IEEE Xplore (2012)Google Scholar
  5. 5.
    Yang, M.C.K.: On the distribution of the inter-record times in an increasing population. J. Appl. Probab., 148–154 (1975)Google Scholar
  6. 6.
    Rényi, A.: Théorie des ’el’ements saillants d’une suite d’observations. Ann. Fac. Sci. Univ. Clermont-Ferrand, 7–13 (1962)Google Scholar
  7. 7.
    Steele, J.M.: The bohnenblust—spitzer algorithm and its applications. J. Comput. Appl. Math. 142, 235–249 (2002), http://portal.acm.org/citation.cfm?id=586795.586814 MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Billingsley, P.: Probability and Measure, 3rd edn. Wiley-Interscience (1995)Google Scholar
  9. 9.
    Arnold, B., Balakrishnan, N., Nagaraja, H.: A First Course in Order Statistics. John Wiley & Sons, New York (1992)MATHGoogle Scholar
  10. 10.
    Devroye, L.: Applications of the theory of records in the study of random trees. Acta Informatica 26, 123–130 (1988)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jacek Cichoń
    • 1
  • Jakub Lemiesz
    • 1
  • Marcin Zawada
    • 1
  1. 1.Institute of Mathematics and Computer ScienceWrocław University of TechnologyPoland

Personalised recommendations