Logical Analysis of Hybrid Systems

A Complete Answer to a Complexity Challenge
  • André Platzer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7386)


Hybrid systems have a complete axiomatization in differential dynamic logic relative to continuous systems. They also have a complete axiomatization relative to discrete systems. Moreover, there is a constructive reduction of properties of hybrid systems to corresponding properties of continuous systems or to corresponding properties of discrete systems. We briefly summarize and discuss some of the implications of these results.


Hybrid System Discrete System Continuous System Dynamic Logic Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28. IEEE Computer Society (2012)Google Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)zbMATHCrossRefGoogle Scholar
  3. 3.
    Aréchiga, N., Loos, S.M., Platzer, A., Krogh, B.H.: Using theorem provers to guarantee closed-loop system properties. In: Tilbury, D. (ed.) ACC (2012)Google Scholar
  4. 4.
    Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)Google Scholar
  5. 5.
    Cook, S.A.: Soundness and completeness of an axiom system for program verification. SIAM J. Comput. 7(1), 70–90 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Davoren, J.M., Nerode, A.: Logics for hybrid systems. IEEE 88(7), 985–1010 (2000)CrossRefGoogle Scholar
  7. 7.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Harel, D.: First-Order Dynamic Logic. Springer, New York (1979)zbMATHCrossRefGoogle Scholar
  9. 9.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  10. 10.
    Harel, D., Meyer, A.R., Pratt, V.R.: Computability and completeness in logics of programs (preliminary report). In: STOC, pp. 261–268. ACM (1977)Google Scholar
  11. 11.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  12. 12.
    Istrail, S.: An arithmetical hierarchy in propositional dynamic logic. Inf. Comput. 81(3), 280–289 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3), 427–443 (1997)CrossRefGoogle Scholar
  14. 14.
    Kozen, D., Parikh, R.: An elementary proof of the completeness of PDL. Theor. Comp. Sci. 14, 113–118 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Leivant, D.: Matching explicit and modal reasoning about programs: A proof theoretic delineation of dynamic logic. In: LICS, pp. 157–168. IEEE Computer Society (2006)Google Scholar
  16. 16.
    Loos, S.M., Platzer, A.: Safe intersections: At the crossing of hybrid systems and verification. In: Yi, K. (ed.) ITSC, pp. 1181–1186. Springer (2011)Google Scholar
  17. 17.
    Loos, S.M., Platzer, A., Nistor, L.: Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 42–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Meyer, A.R., Parikh, R.: Definability in dynamic logic. J. Comput. Syst. Sci. 23(2), 279–298 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Mitsch, S., Loos, S.M., Platzer, A.: Towards formal verification of freeway traffic control. In: Lu, C. (ed.) ICCPS, pp. 171–180. IEEE (2012)Google Scholar
  20. 20.
    Parikh, R.: The Completeness of Propositional Dynamic Logic. In: Winkowski, J. (ed.) MFCS 1978. LNCS, vol. 64, pp. 403–415. Springer, Heidelberg (1978)CrossRefGoogle Scholar
  21. 21.
    Peleg, D.: Concurrent dynamic logic. J. ACM 34(2), 450–479 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Platzer, A.: Differential Dynamic Logic for Verifying Parametric Hybrid Systems. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 216–232. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Platzer, A.: Differential Dynamic Logics: Automated Theorem Proving for Hybrid Systems. Ph.D. thesis, Department of Computing Science, University of Oldenburg (December 2008) (appeared with Springer)Google Scholar
  25. 25.
    Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010)zbMATHCrossRefGoogle Scholar
  27. 27.
    Platzer, A.: Quantified Differential Dynamic Logic for Distributed Hybrid Systems. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Platzer, A.: Stochastic Differential Dynamic Logic for Stochastic Hybrid Programs. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 446–460. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Platzer, A.: A complete axiomatization of quantified differential dynamic logic for distributed hybrid systems. In: Logical Methods in Computer Science (2012); special issue for selected papers from CSL 2010Google Scholar
  30. 30.
    Platzer, A.: The complete proof theory of hybrid systems. In: LICS [1]Google Scholar
  31. 31.
    Platzer, A.: Logics of dynamical systems (invited tutorial). In: LICS [1]Google Scholar
  32. 32.
    Platzer, A.: The structure of differential invariants and differential cut elimination. In: Logical Methods in Computer Science (to appear, 2012)Google Scholar
  33. 33.
    Platzer, A., Clarke, E.M.: Computing Differential Invariants of Hybrid Systems as Fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–189. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. Form. Methods Syst. Des. 35(1), 98–120 (2009); special issue for selected papers from CAV 2008zbMATHCrossRefGoogle Scholar
  35. 35.
    Platzer, A., Clarke, E.M.: Formal Verification of Curved Flight Collision Avoidance Maneuvers: A Case Study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 547–562. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  36. 36.
    Platzer, A., Quesel, J.-D.: KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  37. 37.
    Platzer, A., Quesel, J.-D.: European Train Control System: A Case Study in Formal Verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 246–265. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  38. 38.
    Platzer, A., Quesel, J.-D., Rümmer, P.: Real World Verification. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 485–501. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  39. 39.
    Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: FOCS, pp. 109–121. IEEE (1976)Google Scholar
  40. 40.
    Reif, W., Schellhorn, G., Stenzel, K.: Proving System Correctness with KIV 3.0. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 69–72. Springer, Heidelberg (1997)Google Scholar
  41. 41.
    Renshaw, D.W., Loos, S.M., Platzer, A.: Distributed Theorem Proving for Distributed Hybrid Systems. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 356–371. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  42. 42.
    Segerberg, K.: A completeness theorem in the modal logic of programs. Notices AMS 24, 522 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • André Platzer
    • 1
  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations