An Infinite Hierarchy of Language Families Resulting from Stateless Pushdown Automata with Limited Pushdown Alphabets

  • Alexander Meduna
  • Lukáš Vrábel
  • Petr Zemek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7386)


As its name suggests, a stateless pushdown automaton has no states. As a result, each of its computational steps depends only on the currently scanned symbol and the current pushdown-store top. In this paper, we consider stateless pushdown automata whose size of their pushdown alphabet is limited by a positive integer. More specifically, we establish an infinite hierarchy of language families resulting from stateless pushdown automata with limited pushdown alphabets. In addition, we prove analogous results for stateless deterministic pushdown automata and stateless real-time pushdown automata. A formulation of an open problem closes the paper.


stateless pushdown automata limited pushdown alphabets generative power infinite hierarchy of language families 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eğecioğlu, Ö., Hegedüs, L., Nagy, B.: Hierarchies of stateless multicounter 5’ → 3’ Watson-Crick automata languages. Fundamenta Informaticae 110(1-4), 111–123 (2011)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Nagy, B., Hegedüs, L., Eğecioğlu, Ö.: Hierarchy Results on Stateless Multicounter 5′ → 3′ Watson-Crick Automata. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part I. LNCS, vol. 6691, pp. 465–472. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Eğecioğlu, Ö., Ibarra, O.H.: On Stateless Multicounter Machines. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 178–187. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Frisco, P., Ibarra, O.H.: On Stateless Multihead Finite Automata and Multihead Pushdown Automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 240–251. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Gallier, J.H.: DPDA’s in ’atomic normal form’ and applications to equivalence problems. Theoretical Computer Science 14(2), 155–186 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley, Boston (1978)zbMATHGoogle Scholar
  7. 7.
    Ibarra, O.H., Karhumäki, J., Okhotin, A.: On Stateless Multihead Automata: Hierarchies and the Emptiness Problem. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 94–105. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Kutrib, M., Messerschmidt, H., Otto, F.: On stateless deterministic restarting automata. Acta Informatica 47(7), 391–412 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Kutrib, M., Messerschmidt, H., Otto, F.: On stateless two-pushdown automata and restarting automata. International Journal of Foundations of Computer Science 21(5), 781–798 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Meduna, A.: Elements of Compiler Design. Auerbach Publications, Boston (2007)Google Scholar
  11. 11.
    Oyamaguchi, M., Honda, N.: The decidability of equivalence for deterministic stateless pushdown automata. Information and Control 38(3), 367–376 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Valiant, L.G.: Decision procedures for families of deterministic pushdown automata. Research Report CS-RR-001, Department of Computer Science, University of Warwick, Coventry, UK (1973)Google Scholar
  13. 13.
    Yang, L., Dang, Z., Ibarra, O.H.: On stateless automata and P systems. International Journal of Foundations of Computer Science, 1259–1276 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexander Meduna
    • 1
  • Lukáš Vrábel
    • 1
  • Petr Zemek
    • 1
  1. 1.Faculty of Information Technology, IT4Innovations, Centre of ExcellenceBrno University of TechnologyBrnoCzech Republic

Personalised recommendations