Strong Backdoors to Nested Satisfiability

• Serge Gaspers
• Stefan Szeider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7317)

Abstract

Knuth (1990) introduced the class of nested formulas and showed that their satisfiability can be decided in polynomial time. We show that, parameterized by the size of a smallest strong backdoor set to the base class of nested formulas, computing the number of satisfying assignments of any CNF formula is fixed-parameter tractable. Thus, for any k > 0, the satisfiability problem can be solved in polynomial time for any formula F for which there exists a set B of at most k variables such that for every truth assignment τ to B, the reduced formula F[τ] is nested; moreover, the degree of the polynomial is independent of k.

Our algorithm uses the grid-minor theorem of Robertson and Seymour (1986) to either find that the incidence graph of the formula has bounded treewidth—a case that is solved by model checking for monadic second order logic—or to find many vertex-disjoint obstructions in the incidence graph. For the latter case, new combinatorial arguments are used to find a small backdoor set. Combining both cases leads to an approximation algorithm producing a strong backdoor set whose size is upper bounded by a function of the optimum. Going through all assignments to this set of variables and using Knuth’s algorithm, the satisfiability of the input formula can be decided. With a similar approach, one can also count the number of satisfying assignments of the given formula.

References

1. 1.
Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)
2. 2.
Biedl, T., Henderson, P.: Nested SAT graphs have treewidth three. Technical Report CS-2004-70. University of Waterloo (2004)Google Scholar
3. 3.
Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)
4. 4.
Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. of STOC 1971, pp. 151–158 (1971)Google Scholar
5. 5.
Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of Theoretical Computer Science, vol. B, pp. 193–242. Elsevier (1990)Google Scholar
6. 6.
Diestel, R.: Graph Theory, 4th edn. Graduate Texts in Mathematics, vol. 173. Springer (2010)Google Scholar
7. 7.
Dilkina, B.N., Gomes, C.P., Sabharwal, A.: Tradeoffs in the Complexity of Backdoor Detection. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 256–270. Springer, Heidelberg (2007)
8. 8.
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer (1999)Google Scholar
9. 9.
Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. J. ACM 35(3), 727–739 (1988)
10. 10.
Fischer, E., Makowsky, J.A., Ravve, E.R.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discr. Appl. Math. 156(4), 511–529 (2008)
11. 11.
Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer (2006)Google Scholar
12. 12.
Gaspers, S.: From edge-disjoint paths to independent paths. Technical Report 1203.4483, arXiv (2012)Google Scholar
13. 13.
Gaspers, S., Szeider, S.: Backdoors to Acyclic SAT. In: Czumaj, A., et al. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 363–374. Springer, Heidelberg (2012)Google Scholar
14. 14.
Gaspers, S., Szeider, S.: Backdoors to Satisfaction. In: Bodlaender, H.L., Downey, R.G., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 287–317. Springer, Heidelberg (2012)Google Scholar
15. 15.
Gaspers, S., Szeider, S.: Strong backdoors to bounded treewidth SAT. Technical Report 1204.6233, arXiv (2012)Google Scholar
16. 16.
Gaspers, S., Szeider, S.: Strong backdoors to nested satisfiability. Technical Report 1202.4331, arXiv (2012)Google Scholar
17. 17.
Kawarabayashi, K.-I., Kobayashi, Y., Reed, B.: The disjoint paths problem in quadratic time. J. Comb. Theory, Ser. B 102(2), 424–435 (2012)
18. 18.
Kawarabayashi, K.-I., Mohar, B., Reed, B.A.: A simpler linear time algorithm for embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-width. In: Proc. of FOCS 2008, pp. 771–780 (2008)Google Scholar
19. 19.
Kirousis, L.M., Serna, M.J., Spirakis, P.G.: Parallel complexity of the connected subgraph problem. SIAM J. Comput. 22(3), 573–586 (1993)
20. 20.
Knuth, D.E.: Nested satisfiability. Acta Informatica 28(1), 1–6 (1990)
21. 21.
Kratochvíl, J., Křivánek, M.: Satisfiability and co-nested formulas. Acta Inf. 30, 397–403 (1993)
22. 22.
Levin, L.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973)Google Scholar
23. 23.
Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)
24. 24.
Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorithmica 62(3-4), 807–822 (2012)
25. 25.
Menger, K.: Zur allgemeinen Kurventheorie. Fundamenta Mathematicae 10, 96–115 (1927)
26. 26.
Mohar, B.: Embedding graphs in an arbitrary surface in linear time. In: Proc. of STOC 1996, pp. 392–397 (1996)Google Scholar
27. 27.
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press (2006)Google Scholar
28. 28.
Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to Horn and binary clauses. In: Proc. of SAT 2004, pp. 96–103 (2004)Google Scholar
29. 29.
Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. Acta Inf. 44(7-8), 509–523 (2007)
30. 30.
Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed parameter tractable. J. Comput. Syst. Sci. 75(8), 435–450 (2009)
31. 31.
Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)
32. 32.
Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Combin. Theory, Ser. B 41(1), 92–114 (1986)
33. 33.
Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. J. Combin. Theory, Ser. B 62(2), 323–348 (1994)
34. 34.
Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete Algorithms 8(1), 50–64 (2010)
35. 35.
Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8(2), 189–201 (1979)
36. 36.
Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen 114(1), 570–590 (1937)
37. 37.
Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: Proc. of IJCAI 2003, pp. 1173–1178 (2003)Google Scholar

Authors and Affiliations

• Serge Gaspers
• 1
• 2
• Stefan Szeider
• 2
1. 1.School of Computer Science and EngineeringThe University of New South WalesSydneyAustralia
2. 2.Institute of Information SystemsVienna University of TechnologyViennaAustria