Strong Backdoors to Nested Satisfiability

  • Serge Gaspers
  • Stefan Szeider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7317)


Knuth (1990) introduced the class of nested formulas and showed that their satisfiability can be decided in polynomial time. We show that, parameterized by the size of a smallest strong backdoor set to the base class of nested formulas, computing the number of satisfying assignments of any CNF formula is fixed-parameter tractable. Thus, for any k > 0, the satisfiability problem can be solved in polynomial time for any formula F for which there exists a set B of at most k variables such that for every truth assignment τ to B, the reduced formula F[τ] is nested; moreover, the degree of the polynomial is independent of k.

Our algorithm uses the grid-minor theorem of Robertson and Seymour (1986) to either find that the incidence graph of the formula has bounded treewidth—a case that is solved by model checking for monadic second order logic—or to find many vertex-disjoint obstructions in the incidence graph. For the latter case, new combinatorial arguments are used to find a small backdoor set. Combining both cases leads to an approximation algorithm producing a strong backdoor set whose size is upper bounded by a function of the optimum. Going through all assignments to this set of variables and using Knuth’s algorithm, the satisfiability of the input formula can be decided. With a similar approach, one can also count the number of satisfying assignments of the given formula.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Biedl, T., Henderson, P.: Nested SAT graphs have treewidth three. Technical Report CS-2004-70. University of Waterloo (2004)Google Scholar
  3. 3.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. of STOC 1971, pp. 151–158 (1971)Google Scholar
  5. 5.
    Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of Theoretical Computer Science, vol. B, pp. 193–242. Elsevier (1990)Google Scholar
  6. 6.
    Diestel, R.: Graph Theory, 4th edn. Graduate Texts in Mathematics, vol. 173. Springer (2010)Google Scholar
  7. 7.
    Dilkina, B.N., Gomes, C.P., Sabharwal, A.: Tradeoffs in the Complexity of Backdoor Detection. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 256–270. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer (1999)Google Scholar
  9. 9.
    Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. J. ACM 35(3), 727–739 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Fischer, E., Makowsky, J.A., Ravve, E.R.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discr. Appl. Math. 156(4), 511–529 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer (2006)Google Scholar
  12. 12.
    Gaspers, S.: From edge-disjoint paths to independent paths. Technical Report 1203.4483, arXiv (2012)Google Scholar
  13. 13.
    Gaspers, S., Szeider, S.: Backdoors to Acyclic SAT. In: Czumaj, A., et al. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 363–374. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    Gaspers, S., Szeider, S.: Backdoors to Satisfaction. In: Bodlaender, H.L., Downey, R.G., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 287–317. Springer, Heidelberg (2012)Google Scholar
  15. 15.
    Gaspers, S., Szeider, S.: Strong backdoors to bounded treewidth SAT. Technical Report 1204.6233, arXiv (2012)Google Scholar
  16. 16.
    Gaspers, S., Szeider, S.: Strong backdoors to nested satisfiability. Technical Report 1202.4331, arXiv (2012)Google Scholar
  17. 17.
    Kawarabayashi, K.-I., Kobayashi, Y., Reed, B.: The disjoint paths problem in quadratic time. J. Comb. Theory, Ser. B 102(2), 424–435 (2012)zbMATHCrossRefGoogle Scholar
  18. 18.
    Kawarabayashi, K.-I., Mohar, B., Reed, B.A.: A simpler linear time algorithm for embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-width. In: Proc. of FOCS 2008, pp. 771–780 (2008)Google Scholar
  19. 19.
    Kirousis, L.M., Serna, M.J., Spirakis, P.G.: Parallel complexity of the connected subgraph problem. SIAM J. Comput. 22(3), 573–586 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Knuth, D.E.: Nested satisfiability. Acta Informatica 28(1), 1–6 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Kratochvíl, J., Křivánek, M.: Satisfiability and co-nested formulas. Acta Inf. 30, 397–403 (1993)zbMATHCrossRefGoogle Scholar
  22. 22.
    Levin, L.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973)Google Scholar
  23. 23.
    Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)CrossRefGoogle Scholar
  24. 24.
    Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorithmica 62(3-4), 807–822 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Menger, K.: Zur allgemeinen Kurventheorie. Fundamenta Mathematicae 10, 96–115 (1927)zbMATHGoogle Scholar
  26. 26.
    Mohar, B.: Embedding graphs in an arbitrary surface in linear time. In: Proc. of STOC 1996, pp. 392–397 (1996)Google Scholar
  27. 27.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press (2006)Google Scholar
  28. 28.
    Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to Horn and binary clauses. In: Proc. of SAT 2004, pp. 96–103 (2004)Google Scholar
  29. 29.
    Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. Acta Inf. 44(7-8), 509–523 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed parameter tractable. J. Comput. Syst. Sci. 75(8), 435–450 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Combin. Theory, Ser. B 41(1), 92–114 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. J. Combin. Theory, Ser. B 62(2), 323–348 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete Algorithms 8(1), 50–64 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8(2), 189–201 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen 114(1), 570–590 (1937)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: Proc. of IJCAI 2003, pp. 1173–1178 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Serge Gaspers
    • 1
    • 2
  • Stefan Szeider
    • 2
  1. 1.School of Computer Science and EngineeringThe University of New South WalesSydneyAustralia
  2. 2.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations