Advertisement

Resolution-Based Certificate Extraction for QBF

(Tool Presentation)
  • Aina Niemetz
  • Mathias Preiner
  • Florian Lonsing
  • Martina Seidl
  • Armin Biere
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7317)

Abstract

A certificate of (un)satisfiability for a quantified Boolean formula (QBF) represents sets of assignments to the variables, which act as witnesses for its truth value. Certificates are highly requested for practical applications of QBF like formal verification and model checking. We present an integrated set of tools realizing resolution-based certificate extraction for QBF in prenex conjunctive normal form. Starting from resolution proofs produced by the solver DepQBF, we describe the workflow consisting of proof checking, certificate extraction, and certificate checking. We implemented the steps of that workflow in stand-alone tools and carried out comprehensive experiments. Our results demonstrate the practical applicability of resolution-based certificate extraction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Balabanov, V., Jiang, J.-H.R.: Resolution Proofs and Skolem Functions in QBF Evaluation and Applications. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 149–164. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Kleine Büning, H., Zhao, X.: On Models for Quantified Boolean Formulas. In: Lenski, W. (ed.) Logic versus Approximation. LNCS, vol. 3075, pp. 18–32. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Van Gelder, A.: Verifying Propositional Unsatisfiability: Pitfalls to Avoid. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 328–333. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Goultiaeva, A., Van Gelder, A., Bacchus, F.: A Uniform Approach for Generating Proofs and Strategies for Both True and False QBF Formulas. In: IJCAI 2011, pp. 546–553. IJCAI/AAAI (2011)Google Scholar
  6. 6.
    Lonsing, F., Biere, A.: Integrating Dependency Schemes in Search-Based QBF Solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Narizzano, M., Peschiera, C., Pulina, L., Tacchella, A.: Evaluating and Certifying QBFs: A Comparison of State-of-the-Art Tools. AI Commun. 22(4), 191–210 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Yu, Y., Malik, S.: Validating the Result of a Quantified Boolean Formula (QBF) Solver: Theory and Practice. In: ASP-DAC, pp. 1047–1051. ACM Press (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aina Niemetz
    • 1
  • Mathias Preiner
    • 1
  • Florian Lonsing
    • 1
  • Martina Seidl
    • 1
  • Armin Biere
    • 1
  1. 1.Institute for Formal Models and VerificationJohannes Kepler UniversityLinzAustria

Personalised recommendations