Abstract

Craig’s interpolation theorem has numerous applications in model checking, automated reasoning, and synthesis. There is a variety of interpolation systems which derive interpolants from refutation proofs; these systems are ad-hoc and rigid in the sense that they provide exactly one interpolant for a given proof. In previous work, we introduced a parametrised interpolation system which subsumes existing interpolation methods for propositional resolution proofs and enables the systematic variation of the logical strength and the elimination of non-essential variables in interpolants. In this paper, we generalise this system to propositional hyper-resolution proofs and discuss its application to proofs generated by contemporary SAT solvers. Finally, we show that, when applied to local (or split) proofs, our extension generalises two existing interpolation systems for first-order logic and relates them in logical strength.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, P.B.: Resolution with merging. J. ACM 15, 367–381 (1968)MATHCrossRefGoogle Scholar
  2. 2.
    Bacchus, F.: Enhancing Davis Putnam with extended binary clause reasoning. In: IAAI, pp. 613–619. AAAI Press / MIT Press (2002)Google Scholar
  3. 3.
    Bonacina, M.P., Johansson, M.: On Interpolation in Decision Procedures. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 1–16. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants in satisfiability modulo theories. In: TOCL (2010)Google Scholar
  5. 5.
    Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symbolic Logic 22, 250–268 (1957)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    D’Silva, V.: Propositional Interpolation and Abstract Interpretation. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 185–204. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant Strength. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–145. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Fuchs, A., Goel, A., Grundy, J., Krstić, S., Tinelli, C.: Ground Interpolation for the Theory of Equality. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 413–427. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Gershman, R., Strichman, O.: Cost-Effective Hyper-Resolution for Preprocessing CNF Formulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 423–429. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press (2009)Google Scholar
  12. 12.
    Huang, G.: Constructing Craig Interpolation Formulas. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 181–190. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Refinement. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Jiang, J.-H.R., Lin, H.-P., Hung, W.-L.: Interpolating functions from large Boolean relations. In: ICCAD, pp. 779–784. ACM (2009)Google Scholar
  15. 15.
    Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 199–213. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Krajíček, J.: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. J. Symbolic Logic 62, 457–486 (1997)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Maehara, S.: On the interpolation theorem of Craig. Sûgaku 12, 235–237 (1961)MathSciNetGoogle Scholar
  18. 18.
    McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    McMillan, K.L.: An interpolating theorem prover. TCS 345(1), 101–121 (2005)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    McMillan, K.L.: Quantified Invariant Generation Using an Interpolating Saturation Prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symbolic Logic 62, 981–998 (1997)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Robinson, J.: Automatic deduction with hyper-resolution. J. Comp. Math. 1 (1965)Google Scholar
  23. 23.
    Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint Solving for Interpolation. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Simmonds, J., Davies, J., Gurfinkel, A., Chechik, M.: Exploiting resolution proofs to speed up LTL vacuity detection for BMC. STTT 12, 319–335 (2010)CrossRefGoogle Scholar
  25. 25.
    Weissenbacher, G.: Program Analysis with Interpolants. PhD thesis, Oxford (2010)Google Scholar
  26. 26.
    Yorsh, G., Musuvathi, M.: A Combination Method for Generating Interpolants. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Georg Weissenbacher
    • 1
    • 2
  1. 1.Princeton UniversityUSA
  2. 2.Vienna University of TechnologyAustria

Personalised recommendations