On Efficient Computation of Variable MUSes

  • Anton Belov
  • Alexander Ivrii
  • Arie Matsliah
  • Joao Marques-Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7317)


In this paper we address the following problem: given an unsatisfiable CNF formula \({\mathcal{F}}\), find a minimal subset of variables of \({\mathcal{F}}\) that constitutes the set of variables in some unsatisfiable core of \({\mathcal{F}}\). This problem, known as variable MUS (VMUS) computation problem, captures the need to reduce the number of variables that appear in unsatisfiable cores. Previous work on computation of VMUSes proposed a number of algorithms for solving the problem. However, the proposed algorithms lack all of the important optimization techniques that have been recently developed in the context of (clausal) MUS computation. We show that these optimization techniques can be adopted for VMUS computation problem and result in multiple orders magnitude speed-ups on industrial application benchmarks. In addition, we demonstrate that in practice VMUSes can often be computed faster than MUSes, even when state-of-the-art optimizations are used in both contexts.


Model Check Conjunctive Normal Form Interesting Variable Computation Problem Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recursive model rotation. In: Formal Methods in Computer-Aided Design (2011)Google Scholar
  2. 2.
    Belov, A., Marques-Silva, J.: Minimally Unsatisfiable Boolean Circuits. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 145–158. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Biere, A.: Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computation 4, 75–97 (2008)zbMATHGoogle Scholar
  4. 4.
    Chen, Z., Ding, D.: Variable Minimal Unsatisfiability. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 262–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Chen, Z.-Y., Tao, Z.-H., Büning, H.K., Wang, L.-F.: Applying variable minimal unsatisfiability in model checking. Journal of Software 19(1), 39–47 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Desrosiers, C., Galinier, P., Hertz, A., Paroz, S.: Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems. J. Comb. Optim. 18(2), 124–150 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gupta, A., Ganai, M.K., Yang, Z., Ashar, P.: Iterative abstraction using sat-based bmc with proof analysis. In: ICCAD, pp. 416–423 (2003)Google Scholar
  8. 8.
    Kullmann, O., Lynce, I., Marques-Silva, J.: Categorisation of Clauses in Conjunctive Normal Forms: Minimally Unsatisfiable Sub-clause-sets and the Lean Kernel. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 22–35. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Marques-Silva, J., Lynce, I.: On Improving MUS Extraction Algorithms. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–173. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Marques-Silva, J.: Minimal unsatisfiability: Models, algorithms and applications. In: International Symposium on Multiple-Valued Logic, pp. 9–14 (2010)Google Scholar
  12. 12.
    Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Formal Methods in Computer-Aided Design (October 2010)Google Scholar
  13. 13.
    Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. J. Comput. Syst. Sci. 37(1), 2–13 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Journal of Symbolic Computation 2(3), 293–304 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Ravi, K., Somenzi, F.: Minimal Assignments for Bounded Model Checking. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 31–45. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Ryvchin, V., Strichman, O.: Faster Extraction of High-Level Minimal Unsatisfiable Cores. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 174–187. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    van Maaren, H., Wieringa, S.: Finding Guaranteed MUSes Fast. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 291–304. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anton Belov
    • 1
  • Alexander Ivrii
    • 3
  • Arie Matsliah
    • 3
  • Joao Marques-Silva
    • 1
    • 2
  1. 1.CASLUniversity College DublinIreland
  2. 2.IST/INESC-IDLisbonPortugal
  3. 3.IBM ResearchHaifaIsrael

Personalised recommendations