The Influence of Pollen Concentration on the Dispension of Antihistaminics and Corticosteroids to Hay Fever Patients

  • Arnold J. H. van Vliet
  • Hilde Tobi
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)

Abstract

Climate change may induce alterations in the start and duration of the pollen season. Future changes in climate are likely to significantly advance the start of the pollen season and change the pollen concentration in the atmosphere. These changes may have consequences for the use and costs of medication for allergic rhinitis (AR). The aim of the study presented here was to investigate the effects of changes in the pollen concentration on medication dispensing and medication costs. Weekly pharmacy dispensing data on medication for hay fever and the associated costs were modeled using weekly pollen counts for different species during the period 2001–2005. Both the pollen counts and the pharmacy data have been collected from the Netherlands. The majority of the annually dispensed AR-medication appeared not to be directly related to pollen counts and was dispensed outside the pollen season. However, the large weekly variation in AR medication dispersion and costs could be attributed to a substantial degree to grass, Birch and Alder pollen concentration in the atmosphere. This significant impact of weekly pollen counts on the variation in medication dispensing suggests the importance of changes in pollen concentration in determining the incidence of symptoms. Climate change induced changing pollen seasons will make it more difficult for patients and health professionals to anticipate the need for AR medication.

Keywords

Pollen Concentration Pollen Season Pollen Count Fever Patient Ambrosia Artemisiifolia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asher, M.I., Montefort, S., Bjorksten, B., Lai, C.K.W., Strachan, D.P., Weiland, S.K. et al. (2006). Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. The Lancet, 368(9537), 733–743.CrossRefGoogle Scholar
  2. Bachert, C., Bousquet, J., Canonica, G.W., Durham, S.R., Klimek, L., Mullol, J. et al. (2004). Levocetirizine improves quality of life and reduces costs in long-term management of persistent allergic rhinitis. J Allergy Clin Immunol, 114(4), 838–844.PubMedCrossRefGoogle Scholar
  3. Bauchau, V., Durham, S.R. (2004). Prevalence and rate of diagnosis of allergic rhinitis in Europe. Eur Respir J, 24(5), 758–764.PubMedCrossRefGoogle Scholar
  4. Beasley, R. (1998). Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The Lancet, 351(9111), 1225–1232.CrossRefGoogle Scholar
  5. Beggs, P.J. (2004). Impacts of climate change on aeroallergens: Past and future. Clin Exp Allergy, 34, 1507–1513.PubMedCrossRefGoogle Scholar
  6. Bousquet, J., van Cauwenberge, P., Ait Khaled, N., Bachert, C., Baena-Cagnani, C.E., Bouchard, J., et al. (2006). Pharmacologic and anti-IgE treatment of allergic rhinitis ARIA update (in collaboration with GA2LEN). Allergy, 61(9), 1086–1096.PubMedCrossRefGoogle Scholar
  7. Burr, M.L., Emberlin, J.C., Treu, R., Cheng, S., Pearce, N.E. (2003). Pollen counts in relation to the prevalence of allergic rhinoconjunctivitis, asthma and atopic eczema in the International Study of Asthma and Allergies in Childhood (ISAAC). Clin Exp Allergy, 33(12), 1675–1680.PubMedCrossRefGoogle Scholar
  8. D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H. et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62(9), 976–990.CrossRefGoogle Scholar
  9. Damialis, A., Halley, J.M., Gioulekas, D., Vokou, D. (2007). Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmos Environ, 41(33), 7011–7021.CrossRefGoogle Scholar
  10. Driessen, M.N.B.M., Derksen, J.W.M., Spieksma, F.T.M., Roetman, E. (1988). Pollenatlas van de Nederlandse Atmosfeer. Hilversum: Drukkerij Onkenhout B.V.Google Scholar
  11. Emberlin, J., Detandt, M., Gehrig, R., Jaeger, S., Nolard, N., Rantio-Lehtimäki, A. (2002). Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. Int J Biometeorol, 46(4), 159–170.PubMedCrossRefGoogle Scholar
  12. Gupta, R., Sheikh, A., Strachan, D.P., Anderson, H.R. (2004). Burden of allergic disease in the UK: Secondary analyses of national databases. Clin Exp Allergy, 34(4), 520–526.PubMedCrossRefGoogle Scholar
  13. Harvey, R.P., Comer, C., Sanders, B., Westley, R., Marsh, W., Shapiro, H., et al. (1996). Model for outcomes assessment of antihistamine use for seasonal allergic rhinitis. J Allergy Clin Immunol, 97(6), 1233–1241.PubMedCrossRefGoogle Scholar
  14. Health Care Insurance Board. Health Care Insurance Board. Available: www.fk.cvz.nl.Google Scholar
  15. Kurowski, M., Kuna, P., Gorski, P. (2004). Montelukast plus cetirizine in the prophylactic treatment of seasonal allergic rhinitis: Influence on clinical symptoms and nasal allergic inflammation. Allergy, 59(3), 280–288.PubMedCrossRefGoogle Scholar
  16. Lau, H.S., de Boer, A., Beuning, K.S., Porsius, A. (1997). Validation of pharmacy records in drug exposure assessment. J Clin Epidemiol, 50(5), 619–625.PubMedCrossRefGoogle Scholar
  17. Monster, T.B.M., Janssen, W.M.T., de Jong, P.E., de Jong-van den Berg, L.T.W. (2002). Pharmacy data in epidemiological studies: An easy to obtain and reliable tool. Pharmacoepidemiol Drug Safety, 11, 279–284.CrossRefGoogle Scholar
  18. Potter, P.C. (2005). Efficacy and safety of levocetirizine on symptoms and health-related quality of life of children with perennial allergic rhinitis: A double-blind, placebo-controlled randomized clinical trial. Annals Allergy, Asthma Immunol, 95(2), 175–180.CrossRefGoogle Scholar
  19. Ranta, H., Hokkanen, T., Linkosalo, T., Laukkanen, L., Bondestam, K., Oksanen, A. (2008). Male flowering of birch: Spatial synchronization, year-to-year variation and relation of catkin numbers and airborne pollen counts. Forest Ecology and Management, 255(3–4), 643–650.CrossRefGoogle Scholar
  20. Rasmussen, A. (2002). The effects of climate change on the birch pollen season in Denmark. Aerobiologia, 18(3), 253–265.CrossRefGoogle Scholar
  21. Schramm, B., Ehlken, B., Smala, A., Quednau, K., Berger, K., Nowak, D. (2003). Cost of illness of atopic asthma and seasonal allergic rhinitis in Germany: 1-yr retrospective study. Eur Respir J, 21, 116–122.PubMedCrossRefGoogle Scholar
  22. S.F.K. (2008). Stichting Farmaceutische Kengetallen. Available: www.sfk.nl.Google Scholar
  23. Skoner, D.P. (2001). Allergic rhinitis: Definition, epidemiology, pathophysiology, detection, and diagnosis. J Allergy Clin Immunology, 108(1, Part 2), S2–S8.CrossRefGoogle Scholar
  24. Smithuis, L.O.M.J., Haan, G.J.H., van der Laan, L.R., Pekelharing, J.M., Rikken, S.A.J.J., Rutten, W.P.F. (2000). Wetenschappelijke verantwoording van het landelijk model van een probleemgeoriënteerd aanvraagformulier voor laboratoriumonderzoek door huisartsen. Nederlands Tijdschrift voor Klinische Chemie December, (Special), 14–19.Google Scholar
  25. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B. et al. (2007). Climate Change (2007): The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  26. Spieksma, F.T.M., Nikkels, A.H. (1998). Airborne grass pollen in Leiden, the Netherlands: Annual variations and trends in quantities and season starts over 26 years. Aerobiology, International Journal of Aerobiology, 14, 347–358.CrossRefGoogle Scholar
  27. Teranishi, H., Kenda, Y., Katoh, T., Kasuya, M., Oura, E., Taira, H. (2000). Possible role of climate change in the pollen scatter of Japanese cedar Cryptomeria japonica in Japan. Climate Research, 14(1), 65–70.CrossRefGoogle Scholar
  28. van Vliet, A.J.H., de Groot, R.S., Overeem, A., Jacobs, A.F.G., Spieksma, F.T.M. (2002). The influence of temperature and climate change on the timing of pollen release in the Netherlands. International J Climatol, 22, 1757–1767.CrossRefGoogle Scholar
  29. Wayne, P., Foster, S., Connolly, J., Bazzaz, F., Epstein, P. (2002). Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Annals of Allergy, Asthma and Immunology, 8, 279–282.CrossRefGoogle Scholar
  30. Weiss, K.B., Sullivan, S.D. (2001). The health economics of asthma and rhinitis. I. Assessing the economic impact. J Allergy Clin Immunol, 107(1), 3–8.PubMedCrossRefGoogle Scholar
  31. WHO Collaborating Centre for Drug Statistics Methodology. WHO Collaborating Centre for Drug Statistics Methodology. Available:www.whocc.no/atcddd/.Google Scholar
  32. Ziska, L.H., Caulfield, F.A. (2000). Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: Implications for public health. Australian J Plant Physiol, 27(10), 893–898.Google Scholar
  33. Ziska, L.H., Gebhard, D.E., Frenz, D.A., Faulkner, S., Singer, B.D., Straka, J.G. (2003). Cities as harbingers of climate change: Common ragweed, urbanization, and public health. J Allergy Clin Immunol, 111(2), 290–295.PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Arnold J. H. van Vliet
    • 1
    • 3
  • Hilde Tobi
    • 2
  1. 1.Environmental Systems Analysis GroupWageningen UniversityWageningenthe Netherlands
  2. 2.Research Methodology Group -ECSWageningen UniversityWageningenthe Netherlands
  3. 3.Foundation for Sustainable DevelopmentWageningenthe Netherlands

Personalised recommendations