Automata with Modulo Counters and Nondeterministic Counter Bounds

  • Daniel Reidenbach
  • Markus L. Schmid
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7381)


We introduce and investigate Nondeterministically Bounded Modulo Counter Automata (NBMCA), which are two-way one-head automata that comprise a constant number of modulo counters, where the counter bounds are nondeterministically guessed, and this is the only element of nondeterminism. NBMCA are tailored to recognising those languages that are characterised by the existence of a specific factorisation of their words, e.g., pattern languages. In this work, we subject NBMCA to a theoretically sound analysis.


Multi-head automata Counter automata Modulo counters Stateless automata Restricted nondeterminism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, J.H., Ibarra, O.H., Palis, M.A., Ravikumar, B.: On pebble automata. Theoretical Computer Science 44, 111–121 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Frisco, P., Ibarra, O.H.: On Stateless Multihead Finite Automata and Multihead Pushdown Automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 240–251. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: Origins and directions. Theoretical Computer Science 412, 83–96 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. Journal of the ACM 25, 116–133 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ibarra, O.H., Eğecioğlu, Ö.: Hierarchies and Characterizations of Stateless Multicounter Machines. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 408–417. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Ibarra, O.H., Karhumäki, J., Okhotin, A.: On stateless multihead automata: Hierarchies and the emptiness problem. Theoretical Computer Science 411, 581–593 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ibarra, O.H., Ravikumar, B.: On partially blind multihead finite automata. Theoretical Computer Science 356, 190–199 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kutrib, M., Messerschmidt, H., Otto, F.: On stateless two-pushdown automata and restarting automata. International Journal of Foundations of Computer Science 21, 781–798 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Monien, B.: Two-way multihead automata over a one-letter alphabet. RAIRO Informatique Théorique 14, 67–82 (1980)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Petersen, H.: Automata with sensing heads. In: Proc. 3rd Israel Symposium on Theory of Computing and Systems, pp. 150–157 (1995)Google Scholar
  11. 11.
    Reidenbach, D., Schmid, M.L.: A Polynomial Time Match Test for Large Classes of Extended Regular Expressions. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 241–250. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Yang, L., Dang, Z., Ibarra, O.H.: On stateless automata and p systems. International Journal of Foundations of Computer Science 19, 1259–1276 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniel Reidenbach
    • 1
  • Markus L. Schmid
    • 1
  1. 1.Department of Computer ScienceLoughborough UniversityLoughboroughUnited Kingdom

Personalised recommendations