P(l)aying for Synchronization

  • Fedor Fominykh
  • Mikhail Volkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7381)

Abstract

Two topics are presented: synchronization games and synchronization costs. In a synchronization game on a deterministic finite automaton, there are two players, Alice and Bob, whose moves alternate. Alice wants to synchronize the given automaton, while Bob aims to make her task as hard as possible. We answer a few natural questions related to such games. Speaking about synchronization costs, we consider deterministic automata in which each transition has a certain price. The problem is whether or not a given automaton can be synchronized within a given budget. We determine the complexity of this problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ananichev, D.S., Volkov, M.V., Zaks, Y.I.: Synchronizing automata with a letter of deficiency 2. Theor. Comput. Sci. 376, 30–41 (2007)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Béal, M.-P., Perrin, D.: A quadratic algorithm for road coloring. Technical report, Université Paris-Est (2008), http://arxiv.org/abs/0803.0726
  3. 3.
    Blass, A., Gurevich, Y., Nachmanson, L., Veanes, M.: Play to Test. In: Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 32–46. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami. Matematicko-fyzikalny Časopis Slovensk. Akad. Vied 14(3), 208–216 (1964) (in Slovak)MATHGoogle Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, McGraw-Hill, Cambridge (2009)MATHGoogle Scholar
  6. 6.
    Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–510 (1990)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Martyugin, P.V.: Complexity of Problems Concerning Carefully Synchronizing Words for PFA and Directing Words for NFA. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 288–302. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  9. 9.
    Perles, M., Rabin, M.O., Shamir, E.: The theory of definite automata. IEEE Trans. Electronic Comput. 12, 233–243 (1963)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Pin, J.-E.: On two combinatorial problems arising from automata theory. Ann. Discrete Math. 17, 535–548 (1983)MATHGoogle Scholar
  11. 11.
    Rystsov, I.K.: On minimizing length of synchronizing words for finite automata. In: Theory of Designing of Computing Systems, pp. 75–82. Institute of Cybernetics of Ukrainian Acad. Sci. (1980) (in Russian)Google Scholar
  12. 12.
    Sandberg, S.: Homing and Synchronizing Sequences. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Trahtman, A.: The Road Coloring Problem. Israel J. Math. 172(1), 51–60 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Trahtman, A.N.: Modifying the Upper Bound on the Length of Minimal Synchronizing Word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 173–180. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Volkov, M.V.: Synchronizing Automata and the Černý Conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fedor Fominykh
    • 1
  • Mikhail Volkov
    • 1
  1. 1.Institute of Mathematics and Computer ScienceUral Federal UniversityEkaterinburgRussia

Personalised recommendations