Integration of a Speech-Analyzer Agent in a Multi Agent System for Remote Healthcare Monitoring

  • Mohamed Achraf Dhouib
  • Lamine Bougueroua
  • Katarzyna Wegrzyn-Wolska
  • Stefan Todorov
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 179)

Abstract

The age of the population in all societies around the world is increasing. Elderly people prefer to maintain their independence, their autonomy and live at home as long as possible. This research take place in the field of the health care telemonitoring system which proposes software solutions to monitor elderly people in their own home. This study aims to make profit of the technological diversity of the several Decision Support System used to detect distress situation. We propose a multi-Agent approach to federate a collective decision process in which each Agent encapsulates a decision support system. This encapsulation enables the real time combination of the decisions.

References

  1. 1.
    McMorrow, K., Roeger, W.: The Economic and Financial Market Consequences of Global Ageing. Springer Series: European and Transatlantic Studies, XIV. ISBN: 978-3-540-40541-2Google Scholar
  2. 2.
    Ali, R., Sylvie, T., Nicolas S., Jean-Marie, P.: An adaptive system for home monitoring using a multiagent classification of patterns. In: International Journal of Telemedicine and Applications, Hindawi Publishing Corporation, vol. 2008. doi:10.1155/2008/136054Google Scholar
  3. 3.
    Souidene, W., Istrate, D., Medjahed, H., Boudy, J., Baldinger, J.L., Belfeki, I., Delavault, F., Steenkeste, F.: Multi-modal platform for in-home healthcare monitoring (EMUTEM). In: Proceedings of the Second International Conference on Health Informatics HEALTHINF, pp. 381–386. Porto, Portugal (2009)Google Scholar
  4. 4.
    Rao, A., Georgeff, M.: BDI Agents: From Theory to Practice Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95), pp. 312–319. AAAI Press, Menlo Park, California (1995)Google Scholar
  5. 5.
    Ferber, J.: Les systèmes Multi-Agents. Vers une intelligence collective, Paris (1995)MATHGoogle Scholar
  6. 6.
    Chaib-Draa, B.: Interaction between agents i routine. Familiar and Unfamiliar Situation Int. J. Coop. Inform. Syst. 5, 1–25 (1996)CrossRefGoogle Scholar
  7. 7.
    Huget, M.P., Pinson, S.: Une typologie des Modèles d’Agents Document du Lamsade, n. 110. (1998)Google Scholar
  8. 8.
    Wooldridge, M., Jennings, N.R.: Agents theories, architecture and language: A survey In: Wooldridge, M., Jennings, N.R. (eds.) Intelligent Agents, ECAI’94, LNAI 890, pp. 1–32. Springer, Amsterdam (1994)Google Scholar
  9. 9.
    Kumar, D., Shapiro, S.C.: The OK BDI architecture IJAIT. Int. J. Artif. Intell. Tools 3, 349–366 (1994)CrossRefGoogle Scholar
  10. 10.
    Busetta, P., Ramamohanarao, K.: The BDIM Agent Toolkit Design. Department of Computer Sciences, Victoria, Australia (1998)Google Scholar
  11. 11.
    d’Inverno, M., Kinny, D., Luck, M., Wooldridge, M.: A formal specification of dMARS intelligent agents IV: In: Singh M., Rao A., Wooldridge, M. (eds.) Proceedings of the Fourth International Workshop on Agent Theories, Architectures and Languages, vol. 1365, pp. 155–176. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The Belief-Desire-Intention Model of Agency Intelligent Agents V, In: Müller J. -P., Singh M., Rao, A. (eds.) Lecture notes in AI. vol. 1365, Springler, Berlin (1999)Google Scholar
  13. 13.
    Wooldridge, M., Jennungs, N.R., Kinny, D.: The gaia methodology for agent-oriented analysis and design. J. Auton. Agent. Multi-Agent Syst. 3(3), 285–312, Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  14. 14.
    Bauer, B., Huget, M.P.: FIPA Modeling: Agent Class Diagrams (2003)Google Scholar
  15. 15.
    Odell, J., Levy, R., Nodine, M.: FIPA Modeling TC: Agent Class Superstructure Metamodel. FIPA meeting and interim work (2004)Google Scholar
  16. 16.
    Odell, J., Huget, M.P.: FIPA Modeling: Interaction Diagrams (2003)Google Scholar
  17. 17.
    Iglesias, C., Garijo, M., Gonzalez, J.C., Velasco, J.R.: Analysis and Design using MAS-CommonKADS. Inteligent Agents IV LNAI. vol. 1365, Springer, Heidelberg (1998)Google Scholar
  18. 18.
    DeLoach, S.: Anlysis and design using MaSE and AgentTool. In: Proceedings of the 12th Midwest Artificial Intelligence and Cognitive Science Conference (MAICS) (2001)Google Scholar
  19. 19.
    Nwana, H.S., Ndumu, D.T., Lee, L.C., Collins, J.C.: ZEUS: A toolkit for building distributed multi-agent systems. Appl. Artif. Intell. J. 1(13), 129–185 (1999)CrossRefGoogle Scholar
  20. 20.
    EURESCOM MESSAGE: Methodology for engineering systems of software agents. Technical report P907-TI1, EURESCOM (2001)Google Scholar
  21. 21.
    Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS: An Agent-Oriented Software Development Methodology. Technical Report DIT-02-015, Informatica e Telecomunicazioni, University of Trento, Italy (2002)Google Scholar
  22. 22.
    Corchado, J.M., Bajo, J., Tapia, D.I.: ALZ-MAS: Alzheimer’s special care multi-agent system. In: Proceedings of the Workshop on Agents Applied in Health Care (ECAI 2006)Google Scholar
  23. 23.
    Huhns MN, Singh MP, Ontologies for Agents, IEEE Internet Computing, 1(6), 81–83 doi:10.1109/4236.643942 (1997)CrossRefGoogle Scholar
  24. 24.
    Giovanni Caire: WADE User Guide, Telecom Italia (2010)Google Scholar
  25. 25.
    Bratman, M.E., Israel, D.J., Pollack, M.: Plans and resource-bounded practical reasoning. Comput. Intell. 4, 349–355 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mohamed Achraf Dhouib
    • 1
  • Lamine Bougueroua
    • 1
  • Katarzyna Wegrzyn-Wolska
    • 1
  • Stefan Todorov
    • 1
  1. 1.ESIGETELFontainebleau-AvonAvonFrance

Personalised recommendations