Faster Algorithms for Privately Releasing Marginals

  • Justin Thaler
  • Jonathan Ullman
  • Salil Vadhan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7391)


We study the problem of releasing k-way marginals of a database D ∈ ({0, 1} d ) n , while preserving differential privacy. The answer to a k-way marginal query is the fraction of D’s records x ∈ {0, 1} d with a given value in each of a given set of up to k columns. Marginal queries enable a rich class of statistical analyses of a dataset, and designing efficient algorithms for privately releasing marginal queries has been identified as an important open problem in private data analysis (cf. Barak et. al., PODS ’07).

We give an algorithm that runs in time \(d^{O(\sqrt{k})}\) and releases a private summary capable of answering any k-way marginal query with at most ±.01 error on every query as long as \(n \geq d^{O(\sqrt{k})}\). To our knowledge, ours is the first algorithm capable of privately releasing marginal queries with non-trivial worst-case accuracy guarantees in time substantially smaller than the number of k-way marginal queries, which is d Θ(k) (for k ≪ d).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In: Libkin, L. (ed.) PODS, pp. 273–282. ACM (2007)Google Scholar
  2. 2.
    Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ framework. In: Li, C. (ed.) PODS, pp. 128–138. ACM (2005)Google Scholar
  3. 3.
    Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy. In: Dwork, C. (ed.) STOC, pp. 609–618. ACM (2008)Google Scholar
  4. 4.
    Cheraghchi, M., Klivans, A., Kothari, P., Lee, H.K.: Submodular functions are noise stable. In: Randall, D. (ed.) SODA, pp. 1586–1592. SIAM (2012)Google Scholar
  5. 5.
    Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: PODS, pp. 202–210. ACM (2003)Google Scholar
  6. 6.
    Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.P.: On the complexity of differentially private data release: efficient algorithms and hardness results. In: STOC 2009, pp. 381–390 (2009)Google Scholar
  8. 8.
    Dwork, C., Nissim, K.: Privacy-Preserving Datamining on Vertically Partitioned Databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 528–544. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Dwork, C., Rothblum, G.N., Vadhan, S.P.: Boosting and differential privacy. In: FOCS, pp. 51–60. IEEE Computer Society (2010)Google Scholar
  10. 10.
    Gupta, A., Hardt, M., Roth, A., Ullman, J.: Privately releasing conjunctions and the statistical query barrier. In: STOC 2011, pp. 803–812 (2011)Google Scholar
  11. 11.
    Gupta, A., Roth, A., Ullman, J.: Iterative Constructions and Private Data Release. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 339–356. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Hardt, M., Ligett, K., McSherry, F.: A simple and practical algorithm for differentially private data release. CoRR abs/1012.4763 (2010)Google Scholar
  13. 13.
    Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-preserving data analysis. In: FOCS, pp. 61–70. IEEE Computer Society (2010)Google Scholar
  14. 14.
    Hardt, M., Rothblum, G.N., Servedio, R.A.: Private data release via learning thresholds. In: Randall, D. (ed.) SODA, pp. 168–187. SIAM (2012)Google Scholar
  15. 15.
    Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we learn privately? SIAM J. Comput. 40(3), 793–826 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Klivans, A.R., Servedio, R.A.: Toward Attribute Efficient Learning of Decision Lists and Parities. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 224–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: STOC 2010, pp. 765–774 (2010)Google Scholar
  18. 18.
    Sherstov, A.A.: Approximate inclusion-exclusion for arbitrary symmetric functions. Computational Complexity 18(2), 219–247 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Ullman, J., Vadhan, S.: PCPs and the Hardness of Generating Private Synthetic Data. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 400–416. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Justin Thaler
    • 1
  • Jonathan Ullman
    • 1
  • Salil Vadhan
    • 1
  1. 1.School of Engineering and Applied Sciences &, Center for Research on Computation and SocietyHarvard UniversityCambridgeUSA

Personalised recommendations