Polynomial-Time Isomorphism Test for Groups with No Abelian Normal Subgroups

(Extended Abstract)
  • László Babai
  • Paolo Codenotti
  • Youming Qiao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7391)


We consider the problem of testing isomorphism of groups of order n given by Cayley tables. The trivial n logn bound on the time complexity for the general case has not been improved upon over the past four decades. We demonstrate that the obstacle to efficient algorithms is the presence of abelian normal subgroups; we show this by giving a polynomial-time isomorphism test for groups without nontrivial abelian normal subgroups. This concludes a project started by the authors and J. A. Grochow (SODA 2011). Two key new ingredient are: (a) an algorithm to test permutational isomorphism of permutation groups in time, polynomial in the order and simply exponential in the degree; (b) the introduction of the “twisted code equivalence problem,” a generalization of the classical code equivalence problem by admitting a group action on the alphabet. Both of these problems are of independent interest.


Group Isomorphism Permutational Isomorphism Code Equivalence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aschbacher, M., Guralnick, R.: Some applications of the first cohomology group. J. Algebra 90(2), 446–460 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Babai, L., Beals, R.: A polynomial-time theory of black-box groups I. In: Groups St Andrews 1997 in Bath. LMS Lect. Notes, vol. 260, pp. 30–64. Cambr. U. Press (1999)Google Scholar
  3. 3.
    Babai, L., Codenotti, P., Grochow, J.A., Qiao, Y.M.: Code equivalence and group isomorphism. In: Proc. 22nd SODA, pp. 1395–1408 (2011)Google Scholar
  4. 4.
    Babai, L., Qiao, Y.M.: Polynomial-time isomorphism test for groups with abelian Sylow towers. In: 29th STACS, pp. 453–464 (2012)Google Scholar
  5. 5.
    Cameron, P.J.: Finite permutation groups and finite simple groups. Bull. London Math. Soc. 13(1), 1–22 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cannon, J.J., Holt, D.F.: Automorphism group computation and isomorphism testing in finite groups. J. Symb. Comput. 35, 241–267 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Felsch, V., Neubüser, J.: On a programme for the determination of the automorphism group of a finite group. In: Proc. Conf. on Computational Problems in Algebra, Oxford, 1967, pp. 59–60. Pergamon Press (1970)Google Scholar
  8. 8.
    Furst, M.L., Hopcroft, J., Luks, E.M.: Polynomial-time algorithms for permutation groups. In: Proc. 21st FOCS, pp. 36–41. IEEE Comp. Soc. (1980)Google Scholar
  9. 9.
    Kavitha, T.: Linear time algorithms for abelian group isomorphism and related problems. J. Comput. Syst. Sci. 73(6), 986–996 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Knuth, D.E.: Efficient representation of perm groups. Combinat. 11, 57–68 (1991)MathSciNetGoogle Scholar
  11. 11.
    Le Gall, F.: Efficient isomorphism testing for a class of group extensions. In: 26th STACS, pp. 625–636 (2009)Google Scholar
  12. 12.
    Luks, E.M.: Hypergraph isomorphism and structural equivalence of boolean functions. In: Proc. 31st ACM STOC, pp. 652–658. ACM Press (1999)Google Scholar
  13. 13.
    Luks, E.M., Miyazaki, T.: Polynomial-time normalizers for permutation groups with restricted composition factors. In: 13th ISAAC, pp. 176–183 (2002)Google Scholar
  14. 14.
    Luks, E.M., Seress, Á.: Computing the Fitting subgroup and solvable radical for small-base permutation groups in nearly linear time. In: Workshop on Groups and Computation II, DIMACS Series in DMTCS, pp. 169–181 (1991)Google Scholar
  15. 15.
    Miller, G.L.: On the n logn isomorphism technique. In: 10th STOC, pp. 51–58 (1978)Google Scholar
  16. 16.
    Qiao, Y.M., Sarma, J.M.N., Tang, B.: On isomorphism testing of groups with normal Hall subgroups. In: Proc. 28th STACS, pp. 567–578 (2011)Google Scholar
  17. 17.
    Robinson, D.J.S.: A Course in the Theory of Groups, 2nd edn. Springer (1996)Google Scholar
  18. 18.
    Seress, Á.: Permutation Group Algorithms. Cambridge Univ. Press (2003)Google Scholar
  19. 19.
    Sims, C.C.: Computation with permutation groups. In: Petrick, S.R. (ed.) Proc. 2nd Symp. Symb. Algeb. Manip., pp. 23–28. ACM Press (1971)Google Scholar
  20. 20.
    Steinberg, R.: Generators for simple groups. Canad. J. Math. 14, 277–283 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Suzuki, M.: Group Theory II. Springer (1986)Google Scholar
  22. 22.
    Wilson, J.B.: Decomposing p-groups via Jordan algebras. J. Algebra 322, 2642–2679 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Wilson, J.B.: Finding central decompositions of p-groups. J. Group Theory 12, 813–830 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • László Babai
    • 1
  • Paolo Codenotti
    • 2
  • Youming Qiao
    • 3
  1. 1.University of ChicagoUSA
  2. 2.University of MinnesotaUSA
  3. 3.Institute for Theoretical Computer Science, Institute for Interdisciplinary Information SciencesTsinghua UniversityChina

Personalised recommendations