Approximating Sparse Covering Integer Programs Online

  • Anupam Gupta
  • Viswanath Nagarajan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7391)

Abstract

A covering integer program (CIP) is a mathematical program of the form:
$$\begin{aligned} \min \{ c^\top \mathbf{x} \mid A\mathbf{x} \geq \mathbf{1},\; \mathbf{0} \leq \mathbf{x} \leq \mathbf{u},\; \mathbf{x} \in {\ensuremath{\mathbb{Z}}}^n\},\nonumber \end{aligned}$$
where \(A \in R_{\geq 0}^{m \times n}, c,u \in {\ensuremath{\mathbb{R}}}_{\geq 0}^n\). In the online setting, the constraints (i.e., the rows of the constraint matrix A) arrive over time, and the algorithm can only increase the coordinates of x to maintain feasibility. As an intermediate step, we consider solving the covering linear program (CLP) online, where the requirement x ∈ ℤ n is replaced by x ∈ ℝ n .

Our main results are (a) an O(logk)-competitive online algorithm for solving the CLP, and (b) an O(logk ·logℓ)-competitive randomized online algorithm for solving the CIP. Here k ≤ n and ℓ ≤ m respectively denote the maximum number of non-zero entries in any row and column of the constraint matrix A. By a result of Feige and Korman, this is the best possible for polynomial-time online algorithms, even in the special case of set cover (where A ∈ {0,1} m ×n and c, u ∈ {0,1} n ).

The novel ingredient of our approach is to allow the dual variables to increase and decrease throughout the course of the algorithm. We show that the previous approaches, which either only raise dual variables, or lower duals only within a guess-and-double framework, cannot give a performance better than O(logn), even when each constraint only has a single variable (i.e., k = 1).

Keywords

Competitive Ratio Dual Variable Online Algorithm Constraint Matrix Fractional Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor(Seffi), J.: The online set cover problem. In: STOC 2003, pp. 100–105 (2003)Google Scholar
  2. 2.
    Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor(Seffi), J.: A general approach to online network optimization problems. ACM Trans. Algorithms 2(4), 640–660 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alon, N., Spencer, J.: The Probabilistic Method. Wiley-Interscience, New York (2008)MATHCrossRefGoogle Scholar
  4. 4.
    Bansal, N., Buchbinder, N., Naor(Seffi), J.: A primal-dual randomized algorithm for weighted paging. In: FOCS 2007, pp. 507–517 (2007)Google Scholar
  5. 5.
    Bansal, N., Buchbinder, N., Naor(Seffi)., J.: Randomized competitive algorithms for generalized caching. In: STOC 2008, pp. 235–244. ACM, New York (2008)CrossRefGoogle Scholar
  6. 6.
    Bansal, N., Korula, N., Nagarajan, V., Srinivasan, A.: On k-Column Sparse Packing Programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 369–382. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Buchbinder, N., Naor(Seffi)., J.: The design of competitive online algorithms via a primal-dual approach. Found. Trends Theor. Comput. Sci. 3(2-3), 93–263 (2007)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Buchbinder, N., Naor(Seffi)., J.: Online primal-dual algorithms for covering and packing. Math. Oper. Res. 34(2), 270–286 (2009)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: SODA 2000, pp. 106–115 (2000)Google Scholar
  10. 10.
    Chakrabarty, D., Grant, E., Könemann, J.: On Column-Restricted and Priority Covering Integer Programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 355–368. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Gupta, A., Nagarajan, V.: Approximating sparse covering integer programs online. CoRR, abs/1205.0175 (2012)Google Scholar
  12. 12.
    Kolliopoulos, S.G., Young, N.E.: Approximation algorithms for covering/packing integer programs. J. Comput. Syst. Sci. 71(4), 495–505 (2005)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Korman, S.: On the use of randomness in the online set cover problem. M.Sc. thesis, Weizmann Institute of Science (2005)Google Scholar
  14. 14.
    Koufogiannakis, C., Young, N.E.: Greedy Δ-Approximation Algorithm for Covering with Arbitrary Constraints and Submodular Cost. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 634–652. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Pritchard, D., Chakrabarty, D.: Approximability of sparse integer programs. Algorithmica 61(1), 75–93 (2011)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Srinivasan, A.: Improved approximation guarantees for packing and covering integer programs. SIAM J. Comput. 29(2), 648–670 (1999)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Srinivasan, A.: New approaches to covering and packing problems. In: SODA 2001, pp. 567–576 (2001)Google Scholar
  18. 18.
    Srinivasan, A.: An extension of the Lovász Local Lemma, and its applications to integer programming. SIAM J. Comput. 36(3), 609–634 (2006)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Young, N.E.: The k-server dual and loose competitiveness for paging. Algorithmica 11(6), 525–541 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anupam Gupta
    • 1
  • Viswanath Nagarajan
    • 2
  1. 1.Computer Science DepartmentCarnegie Mellon UniversityUSA
  2. 2.IBM T.J. Watson Research CenterUSA

Personalised recommendations