Quantum Strategies Are Better Than Classical in Almost Any XOR Game

  • Andris Ambainis
  • Artūrs Bačkurs
  • Kaspars Balodis
  • Dmitrijs Kravčenko
  • Raitis Ozols
  • Juris Smotrovs
  • Madars Virza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7391)


We initiate a study of random instances of nonlocal games. We show that quantum strategies are better than classical for almost any 2-player XOR game. More precisely, for large n, the entangled value of a random 2-player XOR game with n questions to every player is at least 1.21... times the classical value, for 1 − o(1) fraction of all 2-player XOR games.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Physical Review Letters 98, 230501 (2007)CrossRefGoogle Scholar
  2. 2.
    Almeida, M.L., Bancal, J.-D., Brunner, N., Acin, A., Gisin, N., Pironio, S.: Guess your neighbour’s input: a multipartite non-local game with no quantum advantage. Physical Review Letters 104, 230404 (2010), also arXiv:1003.3844Google Scholar
  3. 3.
    Alon, N., Spencer, J.: The Probabilistic Method. Wiley (2000)Google Scholar
  4. 4.
    Bai, Z., Silverstein, J.: Spectral Analysis of Large Dimensional Random Matrices. Springer (2010)Google Scholar
  5. 5.
    Bennett, C.H., Brassard, G.: Quantum Cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, p. 175 (1984)Google Scholar
  6. 6.
    Braverman, M., Makarychev, K., Makarychev, Y., Naor, A.: The Groethendieck constant is strictly smaller than Krivine’s bound. In: Proceedings of FOCS 2011, pp. 453–462 (2011)Google Scholar
  7. 7.
    Briet, J., Vidick, T.: Explicit lower and upper bounds on the entangled value of multiplayer XOR games, arxiv: 1108.5647Google Scholar
  8. 8.
    Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-optimal and explicit Bell inequality violations. In: Proceedings of Complexity 2011, pp. 157–166 (2011); also arxiv: 1012.5403Google Scholar
  9. 9.
    Cirel’son, B. (Tsirelson): Quantum generalizations of Bell’s inequality. Letters in Mathematical Physics 4, 93–100 (1980)Google Scholar
  10. 10.
    Clauser, J., Horne, M., Shimony, A., Holt, R.: Physical Review Letters 23, 880–884 (1969)CrossRefGoogle Scholar
  11. 11.
    Cleve, R., Höyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: Proceedings of CCC 2004, pp. 236–249 (2004); also quant-ph/0404076Google Scholar
  12. 12.
    Davidson, K., Szarek, S.: Local operator theory, random matrices and Banach spaces. In: Johnson, W.B., Lindenstrauss, J. (eds.) Handbook on the Geometry of Banach Spaces, vol. 1, pp. 317–366. Elsevier (2001)Google Scholar
  13. 13.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  14. 14.
    Grothendieck, A.: Resume de la theorie metrique des produits tensoriels topologiques. Boletim Sociedade De Matematico de Sao Paulo 8, 1–79 (1953)MathSciNetGoogle Scholar
  15. 15.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of STOC 1996, pp. 212–219 (1996)Google Scholar
  16. 16.
    Krivine, J.-L.: Sur la constante de Grothendieck. Comptes Rendus de l’Académie des Sciences, Series A-B 284, A445–A446 (1977)Google Scholar
  17. 17.
    Junge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Communications in Mathematical Physics 306(3), 695–746 (2011); arXiv:1007.3043Google Scholar
  18. 18.
    Linial, N., Mendelson, S., Schechtman, G., Shraibman, A.: Complexity measures of sign matrices. Combinatorica 27(4), 439–463 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues for some sets of random matrices. Math. USSR Sbornik 1, 457–483 (1967)CrossRefGoogle Scholar
  20. 20.
    Mitzenmacher, M., Upfal, E.: Probability and Computing. Randomized Algorithms and Their Analysis. Cambridge University Press (2005)Google Scholar
  21. 21.
    Montero, A.M., Tonge, A.M.: The Schur multiplication in tensor algebras. Studia Math. 68(1), 1–24 (1980)MathSciNetGoogle Scholar
  22. 22.
    Parisi, G.: The order parameter for spin glasses: a function on the interval 0-1. Journal of Physics A: Mathemathical and General 13, 1101–1112 (1980)CrossRefGoogle Scholar
  23. 23.
    Reeds, J.A.: A new lower bound on the real Grothendieck constant (1991) (unpublished manuscript),
  24. 24.
    Sherrington, D., Kirkpatrick, S.: Infinite ranged models of spin glasses. Physical Review B 17, 4384–4403 (1978)CrossRefGoogle Scholar
  25. 25.
    Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: FOCS 1994, pp. 124–134. IEEE (1994)Google Scholar
  26. 26.
    Silman, J., Chailloux, A., Aharon, N., Kerenidis, I., Pironio, S., Massar, S.: Fully distrustful quantum cryptography. Physical Review Letters 106, 220501 (2011)CrossRefGoogle Scholar
  27. 27.
    Simon, D.R.: On the power of quantum computation. In: FOCS 1994, pp. 116–123. IEEE (1994)Google Scholar
  28. 28.
    Stanley, R.: Enumerative Combinatorics, vol. 2. Cambridge University Press (1999)Google Scholar
  29. 29.
    Talagrand, M.: The generalized Parisi formula. Comptes Rendus de l’Académie des Sciences, Series I 337, 111–114 (2003)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Tao, T.: Topics in Random Matrix Theory, Draft of a book,
  31. 31.
    Wehner, S.: Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequalities. Physical Review A 73, 022110 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andris Ambainis
    • 1
  • Artūrs Bačkurs
    • 1
  • Kaspars Balodis
    • 1
  • Dmitrijs Kravčenko
    • 1
  • Raitis Ozols
    • 1
  • Juris Smotrovs
    • 1
  • Madars Virza
    • 2
  1. 1.Faculty of ComputingUniversity of LatviaRigaLatvia
  2. 2.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations