Causal Graph Dynamics

  • Pablo Arrighi
  • Gilles Dowek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7392)

Abstract

We extend the theory of Cellular Automata to arbitrary, time-varying graphs.

Keywords

Cellular Automaton Graph Transformation Global Dynamic Local Rule Uniform Continuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrighi, P., Dowek, G.: On the Completeness of Quantum Computation Models. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 21–30. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Arrighi, P., Fargetton, R., Nesme, V., Thierry, E.: Applying Causality Principles to the Axiomatization of Probabilistic Cellular Automata. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds.) CiE 2011. LNCS, vol. 6735, pp. 1–10. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Arrighi, P., Nesme, V.: A simple block representation of Reversible Cellular Automata with time-simmetry. In: 17th International Workshop on Cellular Automata and Discrete Complex Systems, AUTOMATA 2011, Santiago de Chile (November 2011)Google Scholar
  4. 4.
    Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. J. of Computer and Systems Sciences 77, 372–378 (2010); QIP 2010 (long talk)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Arrighi, P., Nesme, V., Werner, R.: One-Dimensional Quantum Cellular Automata over Finite, Unbounded Configurations. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 64–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: a synchronization mechanism. Journal of Computer and System Sciences 34(2-3), 377–408 (1987)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cavaliere, M., Csikasz-Nagy, A., Jordan, F.: Graph transformations and game theory: A generative mechanism for network formation. University of Trento, Technical Report CoSBI 25/2008 (2008)Google Scholar
  8. 8.
    Ceccherini-Silberstein, T., Coornaert, M.: Cellular automata and groups. Springer (2010)Google Scholar
  9. 9.
    Derbel, B., Mosbah, M., Gruner, S.: Mobile Agents Implementing Local Computations in Graphs. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 99–114. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Durand-Lose, J.: Representing reversible cellular automata with reversible block cellular automata. Discrete Mathematics and Theoretical Computer Science 145, 154 (2001)Google Scholar
  11. 11.
    Durr, C., Santha, M.: A decision procedure for unitary linear quantum cellular automata. In: Proceedings of the 37th IEEE Symposium on Foundations of Computer Science, pp. 38–45. IEEE (1996)Google Scholar
  12. 12.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph transformation. Springer-Verlag New York Inc. (2006)Google Scholar
  13. 13.
    Ehrig, H., Lowe, M.: Parallel and distributed derivations in the single-pushout approach. Theoretical Computer Science 109(1-2), 123–143 (1993)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13(3), 341–363 (2002)MATHCrossRefGoogle Scholar
  15. 15.
    Giavitto, J.L., Spicher, A.: Topological rewriting and the geometrization of programming. Physica D: Nonlinear Phenomena 237(9), 1302–1314 (2008)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Systems Theory 3, 320–375 (1969)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Herrmann, F., Margenstern, M.: A universal cellular automaton in the hyperbolic plane. Theoretical Computer Science 296(2), 327–364 (2003)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Kari, J.: Representation of reversible cellular automata with block permutations. Theory of Computing Systems 29(1), 47–61 (1996)MathSciNetMATHGoogle Scholar
  19. 19.
    Klales, A., Cianci, D., Needell, Z., Meyer, D.A., Love, P.J.: Lattice gas simulations of dynamical geometry in two dimensions. Phys. Rev. E 82(4), 046705 (2010)Google Scholar
  20. 20.
    Kolmogorov, A.N., Uspensky, V.A.: On the definition of an algorithm. Uspekhi Matematicheskikh Nauk 13(4), 3–28 (1958)MathSciNetMATHGoogle Scholar
  21. 21.
    Konopka, T., Markopoulou, F., Smolin, L.: Quantum graphity. Arxiv preprint hep-th/0611197 (2006)Google Scholar
  22. 22.
    Kozma, B., Barrat, A.: Consensus formation on adaptive networks. Phys. Rev. E 77, 016102 (2008)Google Scholar
  23. 23.
    Kreowski, H.-J., Kuske, S.: Autonomous Units and Their Semantics - The Parallel Case. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 56–73. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Kurth, W., Kniemeyer, O., Buck-Sorlin, G.: Relational Growth Grammars – A Graph Rewriting Approach to Dynamical Systems with a Dynamical Structure. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 56–72. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Lathrop, J.I., Lutz, J.H., Patterson, B.: Multi-Resolution Cellular Automata for Real Computation. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds.) CiE 2011. LNCS, vol. 6735, pp. 181–190. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoretical Computer Science 109(1-2), 181–224 (1993)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Murray, J.D.: Mathematical biology. ii: Spatial models and biomedical applications. In: Biomathematics, 3rd edn., vol. 18, Springer (2003)Google Scholar
  28. 28.
    Papazian, C., Rémila, É.: Hyperbolic Recognition by Graph Automata. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 330–342. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Róka, Z.: Simulations between cellular automata on Cayley graphs. Theoretical Computer Science 225(1-2), 81–111 (1999)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Rozenberg, G.: Handbook of graph grammars and computing by graph transformation: Foundations, vol. 1. World Scientific (2003)Google Scholar
  31. 31.
    Sayama, H.: Generative network automata: A generalized framework for modeling complex dynamical systems with autonomously varying topologies. In: IEEE Symposium on Artificial Life, ALIFE 2007, pp. 214–221. IEEE (2007)Google Scholar
  32. 32.
    Scherrer, A., Borgnat, P., Fleury, E., Guillaume, J.-L., Robardet, C.: Description and simulation of dynamic mobility networks. Computer Networks 52(15), 2842–2858 (2008)MATHCrossRefGoogle Scholar
  33. 33.
    Schönhage, A.: Storage modification machines. SIAM Journal on Computing 9, 490 (1980)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Schumacher, B., Werner, R.: Reversible quantum cellular automata. ArXiv pre-print quant-ph/0405174 (2004)Google Scholar
  35. 35.
    Sieg, W.: Church without dogma: Axioms for computability. In: New Computational Paradigms, pp. 139–152 (2008)Google Scholar
  36. 36.
    Sorkin, R.: Time-evolution problem in Regge calculus. Phys. Rev. D 12(2), 385–396 (1975)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Taentzer, G.: Parallel and distributed graph transformation: Formal description and application to communication-based systems. PhD thesis, Technische Universitat Berlin (1996)Google Scholar
  38. 38.
    Taentzer, G.: Parallel high-level replacement systems. Theoretical Computer Science 186(1-2), 43–81 (1997)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Tomita, K., Murata, S., Kamimura, A., Kurokawa, H.: Self-description for Construction and Execution in Graph Rewriting Automata. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 705–715. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  40. 40.
    Tomita, K., Kurokawa, H., Murata, S.: Graph automata: natural expression of self-reproduction. Physica D: Nonlinear Phenomena 171(4), 197–210 (2002)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Tomita, K., Kurokawa, H., Murata, S.: Graph-rewriting automata as a natural extension of cellular automata. In: Gross, T., Sayama, H. (eds.) Adaptive Networks. Understanding Complex Systems, vol. 51, pp. 291–309. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  42. 42.
    Tomita, K., Murata, S., Kurokawa, H.: Asynchronous Graph-Rewriting Automata and Simulation of Synchronous Execution. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 865–875. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  43. 43.
    von Mammen, S., Phillips, D., Davison, T., Jacob, C.: A Graph-Based Developmental Swarm Representation and Algorithm. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 1–12. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pablo Arrighi
    • 1
    • 2
  • Gilles Dowek
    • 3
  1. 1.LIGUniversité de GrenobleFrance
  2. 2.École Normale Supérieure de Lyon, LIPLyonFrance
  3. 3.INRIAParis Cedex 13France

Personalised recommendations