Algebraic Synchronization Trees and Processes

  • Luca Aceto
  • Arnaud Carayol
  • Zoltán Ésik
  • Anna Ingólfsdóttir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7392)


We study algebraic synchronization trees, i.e., initial solutions of algebraic recursion schemes over the continuous categorical algebra of synchronization trees. In particular, we investigate the relative expressive power of algebraic recursion schemes over two signatures, which are based on those for Basic CCS and Basic Process Algebra, as a means for defining synchronization trees up to isomorphism as well as modulo bisimilarity and language equivalence. The expressiveness of algebraic recursion schemes is also compared to that of the low levels in the Caucal hierarchy.


Expressive Power Regular Language Label Transition System Recursion Scheme Algebraic Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S.: A Domain Equation for Bisimulation. Inf. Comput. 92(2), 161–218 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Aho, A.V.: Indexed Grammars — an Extension of Context-Free Grammars. J. ACM 15, 647–671 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of Communicating Processes. Cambridge University Press (2009)Google Scholar
  4. 4.
    de Bakker, J.W.: Recursive Procedures. Mathematical Centre Tracts, vol. 24. Mathematisch Centrum, Amsterdam (1971)Google Scholar
  5. 5.
    Bergstra, J.A., Klop, J.W.: The Algebra of Recursively Defined Processes and the Algebra of Regular Processes. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 82–94. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  6. 6.
    Bloom, S.L., Ésik, Z., Taubner, D.: Iteration Theories of Synchronization Trees. Inf. Comput. 102(1), 1–55 (1993)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bloom, S.L., Ésik, Z.: Iteration Theories. Springer (1993)Google Scholar
  8. 8.
    Bloom, S.L., Ésik, Z.: The Equational Theory of Regular Words. Inf. Comput. 197, 55–89 (2005)zbMATHCrossRefGoogle Scholar
  9. 9.
    Bloom, S.L., Ésik, Z.: A Mezei-Wright Theorem for Categorical Algebras. Theor. Comput. Sci. 411, 341–359 (2010)zbMATHCrossRefGoogle Scholar
  10. 10.
    van Breugel, F.: An Introduction to Metric Semantics: Operational and Denotational Models for Programming and Specification Languages. Theor. Comput. Sci. 258, 1–98 (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Carayol, A., Wöhrle, S.: The Caucal Hierarchy of Infinite Graphs in Terms of Logic and Higher-Order Pushdown Automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Caucal, D.: On Infinite Terms Having a Decidable Monadic Theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Caucal, D.: On Infinite Transition Graphs Having a Decidable Monadic Theory. Theor. Comput. Sci. 290, 79–115 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Christensen, S.: Decidability and Decomposition in Process Algebras. PhD thesis ECS-LFCS-93-278, Department of Computer Science, Univ. of Edinburgh (1983)Google Scholar
  15. 15.
    Courcelle, B.: A Representation of Trees by Languages I and II. Theor. Comput. Sci. 6, 255–279 (1978); Theor. Comput. Sci. 7, 25–55 MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Courcelle, B.: Fundamental Properties of Infinite Trees. Theor. Comput. Sci. 25, 69–95 (1983)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ésik, Z.: Continuous Additive Algebras and Injective Simulations of Synchronization Trees. J. Log. Comput. 12, 271–300 (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Fischer, M.J.: Grammars with Macro-like Productions. In: 9th Annual Symp. Switching and Automata Theory, pp. 131–142. IEEE Press (1968)Google Scholar
  19. 19.
    Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial algebra semantics and continuous algebras. J. ACM 24, 68–95 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Guessarian, I.: Algebraic Semantics. LNCS, vol. 99. Springer, Heidelberg (1981)zbMATHCrossRefGoogle Scholar
  21. 21.
    Milius, S., Moss, L.: The Category-Theoretic Solution of Recursive Program Schemes. Theor. Comput. Sci. 366, 3–59 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Milner, R.: An Algebraic Definition of Simulation Between Programs. In: Proceedings 2nd Joint Conference on Artificial Intelligence, pp. 481–489. BCS (1971)Google Scholar
  23. 23.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  24. 24.
    Milner, R.: Communication and Concurrency. Prentice Hall (1989)Google Scholar
  25. 25.
    Moller, F.: Infinite Results. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 195–216. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  26. 26.
    Park, D.M.R.: Concurrency and Automata on Infinite Sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  27. 27.
    Scott, D.S.: The Lattice of Flow Diagrams. In: Symposium on Semantics of Algorithmic Languages 1971. Lecture Notes in Mathematics, vol. 188, pp. 311–366. Springer (1971)Google Scholar
  28. 28.
    Thomas, W.: A Short Introduction to Infinite Automata. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 130–144. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Thomas, W.: Constructing Infinite Graphs with a Decidable MSO-Theory. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 113–124. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luca Aceto
    • 1
  • Arnaud Carayol
    • 2
  • Zoltán Ésik
    • 3
  • Anna Ingólfsdóttir
    • 1
  1. 1.ICE-TCS, School of Computer ScienceReykjavik UniversityIceland
  2. 2.LIGMUniversité Paris-Est, CNRSFrance
  3. 3.Institute of InformaticsUniversity of SzegedHungary

Personalised recommendations